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Chapter 1

Sobolev spaces

Abstract: This chapter discusses classical aspects of the theory of Sobolev
spaces. We begin with basic definitions. In order to prepare the important
embedding results for Sobolev space we prove Morrey’s inequality and the
inequality of Gagliardo-Nirenberg-Sobolev. Now the proof of continuous em-
beddings of Sobolev space is straight forward. After recalling the Kolmogorov-
Riesz compactness criterion for sets in Lq(Rn) spaces we proceed to prove
for bounded sets Ω ⊂ Rn compactness of the embeddings of Sobolev spaces
Wk,p(Ω) into Lq(Ω) for a suitable range of the exponents p,q.
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8 CHAPTER 1. SOBOLEV SPACES

1.1 Motivation

As we will learn in the Introduction to Part C on variational methods, all ma-
jor developments in the calculus of variations were driven by concrete prob-
lems, mainly in Physics. In these applications the underlying Banach space
is a suitable function space, depending on the context as we are going to see
explicitly later. Major parts of the existence theory of solutions of nonlinear
partial differential use variational methods (some are treated in Chapter 32).
Many other applications can be found for instance in the e-book 10. Here the
function spaces which are used are often the so-called Sobolev spaces and the
successful application of variational methods rests on various types of embed-
dings for these spaces. Accordingly we present here very briefly the classical
aspects of the theory of Sobolev spaces as they are used in later applications.
Some parts of our presentation will just be a brief sketch of important results;
this applies in particular to the results on the approaximation of elements of
a Sobolev space by smooth functions. A comprehensive treatment can for in-
stance be found in the books 2, 1 and a short introduction in 10.

We assume that the reader is familiar with the basics aspects of the theory
of Lebesgue spaces.
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1.2 Basic definitions

Let Ω⊆Rn be a nonempty openset, and for k = 0,1,2, . . . and 1≤ p≤∞ intro-
duce the vector space

C [k,p](Ω) =
{

u ∈ Ck(Ω) : Dαu ∈ Lp(Ω), |α| ≤ k
}

.

Here α = (α1, . . . ,αn) is an n-tuple of number αi = 0,1,2, . . . and |α| = ∑i=1 αi,
and Dαu = ∂|α|u

∂
α1
x1
···∂αn

xn
. On this vector space define a norm for 1≤ p < ∞ by

‖u‖k,p =

(
∑
|α|≤k
‖Dαu‖p

p

)1/p

. (1.1)

and for p = ∞ by
‖ f ‖k,∞ = ∑

|α|≤k
‖Dα f ‖L∞(Ω) . (1.2)

The Sobolev space Wk,p(Ω) is by definition the completion of C [k,p](Ω) with re-
spect to this norm. These Banach spaces are naturally embedded into each
other according to

Wk,p(Ω) ⊂Wk−1,p(Ω) · · · ⊂W0,p(Ω) = Lp(Ω).
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Since the Lebesgue spaces Lp(Ω) are separable for 1 ≤ p < ∞ one can show
that these Sobolev spaces are separable too. For 1 < p < ∞ the spaces Lp(Ω)
are reflexive, and it follows that for 1 < p < ∞ the Sobolev spaces Wk,p(Ω) are
separable reflexive Banach spaces.

There is another equivalent definition of the Sobolev spaces in terms of weak
(or distributional) derivatives due to Meyers and Serrin (1964) 17, 1:

Wk,p(Ω) = { f ∈ Lp(Ω) : Dα f ∈ Lp(Ω) (weakly) for all |α| ≤ k} . (1.3)

Here Dα f stands for the weak derivative of f , i.e. for all φ ∈ C∞
c (Ω) one has in

the sense of Schwartz distributions on Ω

〈Dα f ,φ〉 = (−1)|α|
∫

f (x)Dαφ(x)Dx .

Theorem 1.2.1 Equipped with the norms (1.1) respectively (1.2) the set Wk,p(Ω) is
a Banach space. In the case p = 2 the space Wk,2(Ω) = Hk(Ω) is actually a Hilbert
space with the inner product

〈 f , g〉Hk(Ω) = ∑
|α|≤k

∫
Ω

Dα f (x) · Dαg(x)Dx. (1.4)



1.2. BASIC DEFINITIONS 11

The spaces Wk,p(Ω) are called Sobolev spaces of order (k,p).
Proof. Since the space Lp(Ω) is a vector space, the set Wk,p(Ω) is a vector space too, as a subspace of Lp(Ω). The norm properties of
‖·‖Lp(Ω) easily imply that ‖·‖Wk,p(Ω) is also a norm. 2

The local Sobolev spaces Wk,p
loc (Ω) are obtained when in the above construction

the Lebesgue space Lp(Ω) is replaced by the local Lebesgue space Lp
loc(Ω).

Elements in a Sobolev space can be approximated by smooth functions, i.e.,
these spaces allow mollification. In details one has the following result.

Theorem 1.2.2 Let Ω be an open subset of Rn, k ∈N0 = N ∪ {0} and 1≤ p < ∞.
Then the following holds:

a) For u ∈ Wk,p
loc (Ω) there exists a sequence um ∈ C∞

c (Ω) of C∞ functions on Ω
which have a compact support such that um→ u in Wk,p

loc (Ω).

b) C∞(Ω) ∩Wk,p(Ω) is dense in Wk,p(Ω).

c) C∞
c (Rn) is dense in Wk,p(Rn).

Proof. Here we have to refer to the literature, for instance 2, 1. 2

Naturally, the space C∞
c (Ω) is contained in Wk,p(Ω) for all k = 0,1,2, . . . and

all 1 ≤ p < ∞. The closure of this space in Wk,p(Ω) is denoted by Wk,p
0 (Ω).
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In general Wk,p
0 (Ω) is a proper subspace of Wk,p(Ω). For Ω = Rn however

equality holds.
The fact that Wk,p

0 (Ω) is, in general, a proper subspace of Wk,p(Ω) plays a
decisive role in the formulation of boundary value problems. Roughly one
can say the following: If the boundary Γ = ∂Ω is sufficiently smooth, then
elements u ∈Wk,p(Ω) together with their normal derivatives of order ≤ k− 1
can be restricted to Γ. And elements in Wk,p

0 (Ω) can then be characterized
by the fact that this restriction vanishes. (There is a fairly technical theory
involved here 1). A concrete example of a result of this type is the following
theorem.

Theorem 1.2.3 Let Ω ⊂ Rn be a bounded open subset whose boundary Γ = ∂Ω is
piecewise C1. Then the following holds:

(a) every u ∈ H1(Ω) has a restriction γ0u = u|Γ to the boundary;

(b) H1
0(Ω) = kerγ0 =

{
u ∈ H1(Ω) : γ0(u) = 0

}
.

Obviously, the Sobolev space Wk,p(Ω) embeds naturally into the Lebesgue
space Lp(Ω). Depending on the value of the exponent p in relation to the
dimension n of the underlying space Rn it embeds also into various other
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functions spaces, expressing various degrees of smoothness of elements in
Wk,p(Ω). The following few sections present a number of (classical) estimates
for elements in Wk,p(Ω) which then allow to prove the main results concerning
Sobolev embeddings, i.e., embeddings of the Soboloev spaces into various
other function spaces.

A simple example indicates what can be expected. Take ψ ∈ C∞
c (Rn) such

that ψ(x) = 1 for all |x| ≤ 1 and define f (x) = |x|qψ(x) for x ∈ Rn, for some
q ∈R. Then ∇ f ∈ Lp(Rn)n requires n + (q− 1)p ≥ 0, or

q ≥ 1− n
p

.

Therefore, if 1≤ p < n then q < 0 is allowed and thus f can have a singularity
(at x = 0). If however p ≥ n, then only exponents q ≥ 0 are allowed, and then
f is continuous at x = 0. The following estimates give a much more accurate
picture. These estimates imply first that we get continuous embeddings and
at a later stage we will show that for exponents 1 ≤ p < n these embeddings
are actually compact, if Ω is bounded.

We start with the case n < p ≤ +∞.
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1.3 Morrey’s inequality

Denote the unit sphere in Rn by S and introduce for a Borel measurable set
Γ ⊂ S with σ(Γ) > 0 (σ(Γ) denotes the surface measure of Γ) the sets

Γx,r = {x + tω : ω ∈ Γ,0≤ t ≤ r} , x ∈Rn, r > 0.

Γx,r is the set of all lines of length r from x in the direction ω ∈ Γ. Note that for
measurable functions f one has∫

Γx,r
f (y)Dy =

∫ r

0
Dttn−1

∫
Γ

f (x + tω)Dσ(ω). (1.5)

Choosing f = 1 we find for the Lebesgue measure of Γx,r:

|Γx,r| = rnσ(Γ)/n. (1.6)

Lemma 1.3.1 If S, x,r are as above and u ∈ C1(Γx,r) then∫
Γx,r
|u(y)− u(x)|Dy ≤ rn

n

∫
Γx,r

|∇u(y)|
|x− y|n−1Dy. (1.7)
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Proof. For y = x + tω, 0≤ t ≤ r and ω ∈ Γ one has

u(x + tω)− u(x) =
∫ t

0
ω · ∇u(x + sω)Ds,

thus integration over Γ yields ∫
Γ
|u(x + tω)− u(x)|Dσ(ω) ≤

∫ t

0

∫
Γ
|∇u(x + sω)|Dσ(ω)Ds

=
∫ t

0
sn−1

∫
Γ

|∇u(x + sω)|
|x + sω− x|n−1 Dσ(ω)Ds

=
∫

Γx,t

|∇u(y)|
|y− x|n−1 Dy ≤

∫
Γx,r

|∇u(y)|
|y− x|n−1 Dy.

If we multiply this inequality with tn−1 and integrate from 0 to r and observe Equation (1.5) we get (1.7). 2

Corollary 1.3.2 For any n < p ≤ +∞, any 0 < r < ∞, any x ∈ Rn and any Borel
measurable subset Γ ⊂ S such that σ(Γ) > 0, one has, for all u ∈ C1(Γx,r)

|u(x)| ≤ C(σ(Γ),r,n, p)‖u‖W1,p(Γx,r)
(1.8)

with

C(σ(Γ),r,n, p) =
r1−n/p

σ(Γ)1/p max

{
n−1/p

r
,
(

p− 1
p− n

)1−1/p
}

.

Proof. Clearly, |u(x)| ≤ |u(y)|+ |u(x)− u(y)|, for any y ∈ Γx,r; integration over Γx,r and application of (1.7) gives

|Γx,r||u(x)| =
∫

Γx,r
|u(x)|Dy ≤

∫
Γx,r
|u(y)|Dy +

rn

n

∫
Γx,r

|∇u(y)|
|x− y|n−1 Dy.
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Now apply Hölder’s inequality to continue this estimate by

≤ ‖u‖Lp(Γx,r)
‖1‖Lq(Γx,r)

+
rn

n
‖∇u‖Lp(Γx,r)

∥∥∥∥ 1
|x− ·|n−1

∥∥∥∥
Lq(Γx,r)

(1.9)

where q is the Hölder conjugate exponent of p, i.e., q = p
p−1 . Calculate

∥∥∥∥ 1
| · |n−1

∥∥∥∥
Lq(Γ0,r)

= r1−n/p
(

σ(Γ)
p− 1
p− n

) p−1
p

(1.10)

and insert the result into (1.9). A rearrangement and a simple estimate finally gives (1.8). 2

Corollary 1.3.3 Consider n ∈N and p ∈ (n,+∞]. There are constants A = An and
B = B−1

n (Bn given by (1.12)) such that for any u ∈ C1(Rn) and any x,y ∈ Rn one
has (r = |x− y|, B(x,r) is the ball with center x and radius r)

|u(y)− u(x)| ≤ 2BA1/p
(

p− 1
p− n

) p−1
p

‖∇u‖Lp(B(x,r)∩B(y,r)) |x− y|1−n
p . (1.11)

Proof. Certainly, the intersection V = B(x,r) ∩ B(y,r) of the two balls is not empty. Introduce the following subsets Γ,Λ of the unit
sphere in Rn by the requirement that x + rΓ = (∂B(x,r)) ∩ B(y,r) and y + rΛ = (∂B(y,r)) ∩ B(x,r), i.e., Γ = 1

r (∂B(x,r) ∩ B(y,r)− x)
and Λ = 1

r (∂B(y,r) ∩ B(x,r)− y) = −Γ. It is instructive to draw a picture of the sets introduced above.
Since Γx,r = rΓx,1 and Λy,r = rΛy,1 we find that

Bn =
|Γx,r ∩Λy,r|
|Γx,r|

=
|Γx,1 ∩Λy,1|
|Γx,1|

(1.12)

is a number between 0 and 1 which only depends on the dimension n. It follows |Γx,r| = |Λy,r| = B−1
n |W|, W = Γx,r ∩Λy,r.
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Now we estimate, using Lemma 1.3.1 and Hölder’s inequality

|u(x)− u(y)||W| ≤
∫

W
|u(x)− u(z)|Dz +

∫
W
|u(z)− u(y)|Dz

≤
∫

Γx,r
|u(x)− u(z)|Dz +

∫
Λy,r
|u(z)− u(y)|Dz

≤ rn

n

∫
Γx,r

|∇u(z)|
|x− y|n−1 Dz +

rn

n

∫
Λy,r

|∇u(z)|
|z− y|n−1 Dz

≤ rn

n

(
‖∇u‖Lp(Γx,r)

∥∥∥∥ 1
|x− ·|n−1

∥∥∥∥
Lq(Γx,r)

+ ‖∇u‖Lp(Λy,r)

∥∥∥∥ 1
|y− ·|n−1

∥∥∥∥
Lq(Λy,r)

)

≤ 2
rn

n
‖∇u‖Lp(V)

∥∥∥∥ 1
| · |n−1

∥∥∥∥
Lq(Γ0,r)

.

Taking (1.10), (1.12) and (1.6) into account and recalling r = |x− y|, estimate (1.11) follows with A = σ(Γ)−1. 2

Theorem 1.3.4 (Morrey’s inequality) Suppose n < p ≤ +∞ and u ∈W1,p(Rn).
Then there is a unique version u∗ of u (i.e., u∗= u almost everywhere) which is Hölder
continuous of exponent 1− n

p , i.e., u∗ ∈ C0,1−n
p(Rn) and satisfies

‖u∗‖
C0,1−n

p (Rn)
≤ C‖u‖W1,p(Rn) (1.13)

where C = C(n, p) is a universal constant. In addition the estimates in (1.7), (1.8)
and (1.11) hold when u is replaced by u∗.
Proof. At first consider the case n < p < ∞. For u ∈ C1

c (R
n) Corollaries 1.3.2 and 1.3.3 imply (Cb(R

n) denotes the space of bounded
continuous functions on Rn)

‖u‖Cb(Rn) ≤ C‖u‖W1,p(Rn) and
|u(y)− u(x)|
|y− x|1−

n
p
≤ C‖∇u‖Lp(Rn) .



18 CHAPTER 1. SOBOLEV SPACES

This implies

‖u‖
C0,1− n

p (Rn)
≤ C‖u‖W1,p(Rn) . (1.14)

If u ∈W1,p(Rn) is given, there is a sequence of functions uj ∈ C1
c (R

n) such that uj → u in W1,p(Rn). Estimate (1.14) implies that this

sequence is also a Cauchy sequence in C0,1− n
p (Rn) and thus converges to a unique element u∗ in this space. Clearly Estimate (1.13)

holds for this limit element u∗ and u∗ = u almost everywhere.
The case p = ∞ and u ∈W1,p(Rn) can be proven via a similar approximation argument. 2

Corollary 1.3.5 (Morrey’s inequality) Let Ω be an open bounded subset of Rn with
smooth boundary (C1) and n < p ≤ ∞. Then for every u ∈W1,p(Ω) there exists a
unique version u∗ in C0,1−n

p(Ω) satisfying

‖u∗‖
C0,1−n

p (Ω)
≤ C‖u‖W1,p(Ω) . (1.15)

with a universal constant C = C(n, p,Ω).

Proof. Under the assumptions of the corollary the extension theorem for Sobolev spaces applies according to which elements in
W1,p(Ω) are extended to all of Rn by zero such that there exists a continuous extension operator J : W1,p(Ω)→ W1,p(Rn) (see for
instance Theorem 48.35 of 10). Then, given u ∈W1,p(Ω), Theorem 1.3.4 implies that there is a continuous version U∗ ∈ C0,1− n

p (Rn) of
Ju which satisfies (1.13). Now define u∗ = U∗|Ω. It follows

‖u∗‖
C0,1− n

p (Ω)
≤ ‖U∗‖

C0,1− n
p (Rn)

≤ C‖Ju‖W1,p(Rn) ≤ C‖u‖W1,p(Ω) .

2
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1.4 Gagliardo-Nirenberg-Sobolev inequality

This important inequality is of the form

‖u‖Lq ≤ C‖∇u‖Lp , u ∈ C1
c (R

n) (1.16)

for a suitable exponent q for a given exponent p, 1 ≤ p ≤ n. This exponent
is easily determined through the scale covariance of the quantities in this in-
equality. For λ > 0 introduce uλ by setting uλ(x) = u(λx). A simple calculation
shows ‖uλ‖Lq = λ−n/q ‖u‖Lq and ‖∇uλ‖Lp = λ1−n/p ‖∇u‖Lp. Thus inserting uλ

into (1.16) gives
λ−n/q ‖u‖Lq ≤ Cλ1−n/p ‖∇u‖Lp

for all λ > 0. This is possible for all u ∈ C1
c (R

n) only if

1− n/p + n/q = 0, i.e.,
1
p
=

1
n
+

1
q

. (1.17)

It is a standard notation to denote the exponent q which solves (1.17 ) by p∗,
i.e.,

p∗ =
np

n− p
with the understanding that p∗ = ∞ if p = n.



20 CHAPTER 1. SOBOLEV SPACES

As we will show later the case 1 < p < n can easily be reduced to the case
p = 1, thus we prove this inequality for p = 1, i.e., p∗ = 1∗ = n

n−1.

Theorem 1.4.1 For all u ∈W1,1(Rn) one has

‖u‖1∗ = ‖u‖ n
n−1
≤

n

∏
i=1

(∫
Rn
|∂iu(x)|Dx

) 1
n

≤ n−
1
2 ‖∇u‖1 (1.18)

Proof. According to Theorem 1.2.2 every element u ∈W1,1(Rn) is the limit of a sequence of elements uj ∈ C1
c (R

n). Hence is suffices to
prove this inequality for u ∈ C1

c (R
n), and this is done by induction on the dimension n.

We suggest that the reader proves this inequality for n = 1 and n = 2. Here we present first the case n = 3 before we come to the
general case.

Suppose that u ∈ C1
c (R

3) is given. Observe that now 1∗ = 3/2. Introduce the notation x1 = (y1, x2, x3), x2 = (x1,y2, x3), and
x3 = (x1, x2,y3). The fundamental theorem of calculus implies for i = 1,2,3

|u(x)| ≤
∫ xi

−∞
|∂iu(xi)|Dyi ≤

∫ ∞

−∞
|∂iu(xi)|Dyi,

hence multiplication of these three inequalities gives

|u(x)| 32 ≤
3

∏
i=1

(∫ ∞

−∞
|∂iu(xi)|Dyi

) 1
2

.

Now integrate this inequality with respect to x1 and note that the first factor on the right does not depend on x1:

∫
R
|u(x)| 32 Dx1 ≤

(∫ ∞

−∞
|∂1u(x1)|Dy1

) 1
2 ∫

R

3

∏
i=2

(∫ ∞

−∞
|∂iu(xi)|Dyi

) 1
2

Dx1

Apply Hölder’s inequality (for p = q = 2) to the second integral, this gives the estimate

≤
(∫ ∞

−∞
|∂1u(x1)|Dy1

) 1
2 3

∏
i=2

(∫ ∞

−∞
|∂iu(xi)|Dx1Dyi

) 1
2

.
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Next we integrate this inequality with respect to x2 and apply again Hölder’s inequality to get∫
R2
|u(x)| 32 Dx1Dx2

≤
(∫

R2
|∂2u(x2)|Dx1Dy2

) 1
2 ∫

R

(∫ ∞

−∞
|∂1u(x1)|Dy1

) 1
2
(∫ ∞

−∞
|∂3u(x3)|Dx1Dy3

) 1
2

Dx2

≤
(∫

R2
|∂2u(x2)|Dx1Dy2

) 1
2
(∫

R2
|∂1u(x1)|Dy1Dx2

) 1
2
(∫

R3
|∂3u(x3)|Dx1Dx2Dy3

) 1
2

.

A final integration with respect to x3 and applying Hölder’s inequality as above implies

∫
R3
|u(x)| 32 Dx1Dx2Dx3 ≤

(∫
R3
|∂1u(x1)|Dy1Dx2Dx3

) 1
2
×(∫

R3
|∂2u(x2)|Dx1Dy2Dx3

) 1
2
(∫

R3
|∂3u(x3)|Dx1Dx2Dy3

) 1
2
=

3

∏
i=1

(∫
R3
|∂iu(x)|Dx1Dx2Dx3

) 1
2
≤
(∫

R3
|∇u(x)|Dx1Dx2Dx3

) 1
2

which is the claimed inequality for n = 3.
The general case uses the same strategy. Naturally some more steps are necessary. Now we have 1∗ = n

n−1 . For x = (x1, . . . , xn) ∈Rn

introduce the variables xi = (x1, . . . , xi−1,yi, xi+1, . . . , xn). The fundamental theorem of calculus implies for i = 1, . . . ,n

|u(x)| ≤
∫

R
|∂iu(xi)|Dyi

and thus

|u(x)| n
n−1 ≤

n

∏
i=1

(∫
R
|∂iu(xi)|Dyi

) 1
n−1

. (1.19)

Recall Hölder’s inequality for the product of n− 1 functions in the form∥∥∥∥∥ n

∏
i=2

fi

∥∥∥∥∥
1

≤
n

∏
i=2
‖ fi‖n−1 (1.20)
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and integrate (1.19) with respect to x1 to get

∫
R
|u(x)| n

n−1 Dx1 ≤
(∫

R
|∂1u(x1)|Dy1

) 1
n−1

∫
R

n

∏
i=2

(∫
R
|∂iu(xi)|dyi

) 1
n−1

Dx1

≤
(∫

R
|∂1u(x1)|Dy1

) 1
n−1 n

∏
i=2

(∫
R2
|∂iu(xi)|Dx1Dyi

) 1
n−1

=

(∫
R
|∂1u(x1)|Dy1

) 1
n−1
(∫

R2
|∂2u(x2)|Dx1Dy2

) 1
n−1

×
n

∏
i=3

(∫
R2
|∂iu(xi)|Dx1Dyi

) 1
n−1

where in the last step we isolated the x2 independent term from the product. Now integrate this inequality with respect to x2 and apply
(1.20) again. This implies, after renaming the integration variable y2,

∫
R
|u(x)| n

n−1 Dx1Dx2 ≤
(∫

R2
|∂2u(x)|Dx1Dx2

) 1
n−1

×
∫

R

(∫
R
|∂1u(x)|Dx1

) 1
n−1 n

∏
i=3

(∫
R2
|∂iu(xi)|Dx1Dyi

) 1
n−1

Dx2 ≤

(∫
R2
|∂2u(x)|Dx1Dx2

) 1
n−1
(∫

R2
|∂1u(x)|Dx1Dx2

) 1
n−1

×
n

∏
i=3

(∫
R3
|∂iu(xi)|Dx1Dx2Dyi

) 1
n−1

=
2

∏
i=1

(∫
R2
|∂iu(x)|Dx1Dx2

) 1
n−1
×

n

∏
i=3

(∫
R3
|∂iu(xi)|Dx1Dx2Dyi

) 1
n−1

.
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Obviously one can repeat these steps successively for x3, . . . , xn and one proves by induction that for k ∈ {1, . . . ,n} we get the estimate

∫
Rk
|u(x)| n

n−1 Dx1Dx2 · · ·Dxk ≤
k

∏
i=1

(∫
Rk
|∂iu(x)|Dx1Dx2 · · ·Dxk

) n
n−1

×
n

∏
i=k+1

(∫
Rk+1
|∂iu(xi)|Dx1Dx2 · · ·DxkDyi

) n
n−1

where naturally for k = n the second product does not occur. Thus for k = n one has

∫
Rn
|u(x)| n

n−1 Dx1Dx2 · · ·Dxn ≤
n

∏
i=1

(∫
Rn
|∂iu(x)|Dx1Dx2 · · ·Dxn

) n
n−1

In order to improve this estimate recall Young’s inequality in the elementary form ∏n
i=1 Ai ≤ 1

n ∑n
i=1 An

i , where Ai ≥ 0. Thus we get

‖u‖ n
n−1
≤

n

∏
i=1

(∫
Rn
|∂iu(x)|Dx

) 1
n
≤ 1

n

n

∑
i=1

∫
Rn
|∂iu(x)|Dx

and by Hölder’s inequality one knows ∑n
i=1 |∂iu(x)| ≤ √n |∇u(x)|, hence ‖u‖ n

n−1
≤ 1√

n ‖∇u‖1. 2

Remark 1.4.2 The starting point of our estimates was the identity u(x) =
∫ xi
−∞ ∂iu(xi)Dyi

and the resulting estimate

|u(x)| ≤
∫

R

|∂iu(xi)|Dyi, i = 1, . . . ,n.

If we write

u(x) =
1
2

(∫ xi

−∞
∂iu(xi)dyi −

∫ ∞

xi

∂iu(xi)Dyi

)
,
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we can improve this estimate to

|u(x)| ≤ 1
2

∫
R

|∂iu(xi)|Dyi, i = 1, . . . ,n.

Next we look at the case 1 < p < n. As we will see it can easily be reduced to
the case p = 1.

Theorem 1.4.3 (Gagliardo-Nirenberg-Sobolev inequality) If 1 ≤ p < n then,
for all u ∈W1,p(Rn), with p∗ = np

n−p ,

‖u‖p∗ ≤
1√
n

p(n− 1)
n− p

‖∇u‖p . (1.21)

Proof. Since elements in W1,p(Rn) can be approximated by elements in C1
c (R

n) it suffices to prove Estimate (1.21) for u ∈ C1
c (R

n). For
such a function u consider the function v = |u|s ∈ C1

c (R
n) for an exponent s > 1 to be determined later. We have∇v = s|u|s−1sgn(u)∇u

and thus by applying (1.18) to v we get

‖|u|s‖1∗ ≤
1√
n
‖∇|u|s‖1 =

s√
n

∥∥∥|u|s−1∇u
∥∥∥

1
≤ s√

n

∥∥∥|u|s−1
∥∥∥

q
‖∇u‖p (1.22)

where q is the Hölder conjugate exponent of p. Note that this estimate can be written as

‖u‖s
s1∗ ≤

s√
n
‖u‖s−1

(s−1)q ‖∇u‖p .

Now choose s such that s1∗ = (s− 1)q. This gives s = q
q−1∗ =

p∗
1∗ and accordingly the last estimate can be written as

‖u‖s
p∗ ≤

s√
n
‖u‖s−1

p∗ ‖∇u‖p .

Inserting the value s = p(n−1
n−p of s now yields (1.21). 2
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Corollary 1.4.4 Suppose that Ω⊂Rn is a bounded open set with C1-boundary. Then
for all p ∈ [1,n) and 1 ≤ q ≤ p∗ there is a constant C = C(Ω, p,q) such that for all
u ∈W1,p(Ω)

‖u‖q ≤ C‖u‖1,p .
Proof. Under the given conditions on Ω one can show that every u ∈W1,p(Ω) has an extension to Ju ∈W1,p(Rn) (i.e., Ju|Ω = u and
J : W1,p(Ω)→W1,p(Rn) is continuous). Then for u ∈ C1(Ω̄) ∩W1,p(Ω)

‖u‖Lp∗ (Ω) ≤ C‖Ju‖Lp∗ (Rn) ≤ C‖∇(Ju)‖Lp(Rn) ≤ C‖u‖W1,p(Ω) . (1.23)

Since C1(Ω) is dense in W1,p(Ω), this estimate holds for all u ∈W1,p(Ω). If now 1≤ q < p∗ a simple application of Hölder’s inequality
gives

‖u‖Lq(Ω) ≤ ‖u‖Lp∗ (Ω) ‖1‖Ls(Ω) = ‖u‖Lp∗ (Ω) |Ω|1/s ≤ C|Ω|1/s ‖u‖W1,p(Ω)

where 1
s +

1
p∗ =

1
q . 2

1.4.1 Continuous Embeddings of Sobolev spaces

In this short review of the classical theory of Sobolev spaces we can only dis-
cuss the main embeddings results. In the literature one finds many additional
cases.

For convenience of notation let us introduce, for a given number r ≥ 0,

r+ =

{
r if r /∈N0

r + δ if r ∈N0
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where δ > 0 is some arbitrary small number. For a number r = k + α with
k ∈N0 and 0≤ α < 1 we write Cr(Ω) for Ck,α(Ω).

Lemma 1.4.5 For i ∈N and p ≥ n and i > n/p (i.e., i ≥ 1 if p > n and i ≥ 2 if
p = n) one has

W i,p(Ω) ↪→ C i−(n/p)+(Ω)

and there is a constant C > 0 such that for all u ∈W i,p(Ω)

‖u‖C i−(n/p)+(Ω)
≤ C‖u‖i,p (1.24)

Proof. As earlier it suffices to prove (1.24) for u ∈ C∞(Ω). For such u and p > n and |α| ≤ i− 1 apply Morrey’s inequality to get

‖Dαu‖C0,1−n/p(Ω) ≤ C‖Dαu‖i,p

and therefore with C i−n/p(Ω) ≡ C i−1,1−n/p(Ω), we get (1.24).
If p = n (and thus i ≥ 2) choose q ∈ (1,n) close to n so that i > n/q and q∗ = qn

n−q > n. Then, by the first part of Theorem (1.4.6) and
what we have just shown

Wi,n(Ω) ↪→Wi,q(Ω) ↪→Wi−1,q∗(Ω) ↪→ C i−2,1−n/q∗(Ω).

As q ↑ n implies n/q∗ ↓ 0, we conclude Wi,n(Ω) ↪→ C i−2,α(Ω) for any α ∈ (0,1) which is written as

Wi,n(Ω) ↪→ C i−(n/n)+(Ω).

2

Theorem 1.4.6 (Sobolev Embedding Theorems) Assume that Ω = Rn or that Ω
is a bounded open subset of Rn with a C1-boundary; furthermore assume that 1≤ p <
∞ and k,m ∈N with m ≤ k. Then one has:
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(1) If p < n/m, then Wk,p(Ω) ↪→Wk−m,q(Ω) for q = np
n−pm or 1

q =
1
p − m

n > 0, and
there is a constant C > 0 such that

‖u‖k−m,q ≤ C‖u‖k,p for all u ∈Wk,p(Ω). (1.25)

(2) If p > n/k, then Wk,p(Ω) ↪→ Ck−(n/p)+(Ω) and there is a constant C > 0 such
that

‖u‖Ck−(n/p)+(Ω)
≤ C‖u‖k,p for all u ∈Wk,p(Ω). (1.26)

Proof. Suppose p < n/m and u ∈ Wk,p(Ω); then Dαu ∈ W1,p(Ω) for all |α| ≤ k − 1. Corollary 1.4.4 implies Dαu ∈ Lp∗(Ω) for all
|α| ≤ k− 1 and therefore Wk,p(Ω) ↪→Wk−1,p∗(Ω) and there is a constant C1 > 0 such that

‖u‖k−1,p1
≤ C1 ‖u‖k,p (1.27)

for all u ∈Wk,p(Ω), with p1 = p∗. Next define pj, j ≥ 2, inductively by pj = p∗j−1. Thus 1
pj

= 1
pj−1
− 1

n and since p < n/m we have
1

pm
= 1

p − m
n > 0. Therefore we can apply (1.27) repeatedly and find that the following inclusion maps are all bounded:

Wk,p(Ω) ↪→Wk−1,p1(Ω) ↪→Wk−2,p2(Ω) · · · ↪→Wk−m,pm(Ω)

and part (1) follows.
In order to prove part (2) consider p > n/k. For p≥ n the statement follows from Lemma 1.4.5. Now consider the case n > p > n/k

and choose the largest m such that 1 ≤ m < k and n/m > p. Define q ≥ n by q = np
n−mp (i.e., 1

q = 1
p − m

n > 0). Then, by what we have
established above, the following inclusion maps are all bounded:

Wk,p(Ω) ↪→Wk−m,q(Ω) ↪→ Ck−m−(n/q)+(Ω) = Ck−m−( n
p−m)+(Ω) = Ck−(n/p)+(Ω)

which is the estimate of Part (2). 2
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In the case p = 2 and Ω = Rn one has the Fourier transform F available as a
unitary operator on L2(Rn). This allows to give a convenient characterization
of the Sobolev space Hk(Rn) = Wk,2(Rn) and to prove a useful embedding
result.

Recall that for u ∈ Hk(Rn) one has F (Dαu)(p) = i|ff|pffF (u)(p). Hence we
can characterize this space as

Hk(Rn) =
{

u ∈ L2(Rn) : pαF (u) ∈ L2(Rn), |α| ≤ k
}

=
{

u ∈ L2(Rn) : (1 + p2)k/2F (u) ∈ L2(Rn)
}

.

This definition can be extended to arbitrary s ∈ R and thus we can introduce
the spaces

Hs(Rn) =
{

u ∈ L2(Rn) : (1 + p2)s/2F (u) ∈ L2(Rn)
}

.

As we are going to show this space can be continuously embedded into the
space

Ck
b(R

n) =

{
f ∈ Ck(Rn) : ‖ f ‖k,∞ = sup

|α|≤k
sup
x∈Rn
|Dα f (x)| < ∞

}
.
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Theorem 1.4.7 For k ∈N and s > k + n/2 the Sobolev space Hs(Rn) is continu-
ously embedded into the space Ck

b(R
n) and one has for all u ∈ Hs(Rn)

‖u‖k,∞ ≤ C‖u‖s,2 , lim
|x|→∞

|Dαu(x)| = 0, |α| ≤ k.

Proof. Recall that the Lemma of Riemann-Lebesgue says that the Fourier transform of an L1(Rn) function is continuous and vanishes
at infinity. For |α| ≤ k and s > k + n/2 one knows

∫
Rn

|p2α|
(1 + p2)s Dp = C2

α < ∞.

Thus, for u ∈ Hs(Rn) we can estimate

∫
Rn
|pα(Fu)(p)|Dp ≤ Cα

(∫
Rn

(1 + p2)s|Fu(p)|2Dp
)1/2

= Cα ‖u‖s,2

and therefore for all x ∈Rn

|Dαu(x)| =
∣∣∣∣∫

Rn
eipxpff(Fu)(p)Dp

∣∣∣∣ ≤ Cα ‖u‖s,2 .

It follows ‖u‖k,∞ ≤ ‖u‖s,2. By applying the Lemma of Riemann-Lebesgue we conclude. 2

1.4.2 Compact Embeddings of Sobolev spaces

Here we show that some of the continuous embeddings established above
are actually compact, that is they map bounded subsets into precompact sets.
There are various ways to prove these compactness results. We present a proof
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which is based on the characterization of compact subsets M⊂ Lq(Rn), due to
Kolmogorov and Riesz 15, 21.

Theorem 1.4.8 (Kolmogorov-Riesz compactness criterion) Suppose 1≤ q<∞.
Then a subset M⊂ Lq(Rn) is precompact if, and only if M satisfies the following three
conditions:

(a) M is bounded, i.e.,
∃C<∞ ∀ f∈M ‖ f ‖ ≤ C;

(b)
∀ε>0 ∃R<∞ ∀ f∈M

∥∥π⊥R f
∥∥

q < ε;

(c)
∀ε>0 ∃r>0 ∀ f∈M ∀y∈Rn

|y|<r

∥∥τy( f )− f
∥∥

q < ε.

Here the following notation is used: π⊥R is the operator of multiplication with
the characteristic function of the set {x ∈Rn : |x| > R} and τy denotes the op-
erator of translation by y ∈Rn, i.e., τy( f )(x) = f (x + y).

Remark 1.4.9 If Ω ⊂ Rn is an open bounded subset we can consider Lq(Ω) as a
subset of Lq(Rn) by extending all elements f ∈ Lq(Ω) by 0 to all of Rn. Then the above
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characterization provides also a characterization of precompact subset M ⊂ Lq(Ω)
where naturally condition (b) is satisfied always and where in condition (c) we have
to use these extensions.

There are several versions of compact embedding results depending on the
assumptions on the domain Ω ⊂ Rn which are used. The following version
is already quite comprehensive though there are several newer results of this
type.

Theorem 1.4.10 (Rellich-Kondrachov compactness theorem) Let Ω ⊂ Rn be a
bounded domain. Assume that the boundary of Ω is sufficiently smooth and that
1≤ p < ∞ and k = 1,2, . . .. Then the following holds:

(a) The following embeddings are compact:

(i) kp < n: Wk,p(Ω) ↪→ Lq(Ω), 1≤ q < p∗ = np
n−kp ;

(ii) kp = n: Wk,p(Ω) ↪→ Lq(Ω), 1≤ q < ∞;

(iii) kp > n: Wk,p(Ω) ↪→ C0
b(Ω).

(b) For the subspaces Wk,p
0 (Ω) the embeddings (i) - (iii) are compact for arbitrary

open sets Ω.
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Proof. In some detail we present here only the proof of embedding (i) of part (a) for k = 1. For the remaining proofs we refer to the
specialized literature 2, 1.

According to Corollary 1.4.4 the inclusion mapping Wk,p(Ω) ↪→ Lq(Ω) is continuous for 1 ≤ q ≤ p∗. We have to show that every
bounded subset M ⊂Wk,p(Ω) is precompact in Lq(Ω) for 1≤ q < p∗. This is done by the Kolmogorov-Riesz compactness criterion. By
Remark 1.4.9 only conditions (a) and (c) have to be verified for M considered as a subset of Lq(Ω). Since we know that this inclusion
map is continuous, it follows that M is bounded in Lq(Ω) too and thus Condition (a) of the Kolmogorov-Riesz criterion is verified and
we are left with verifying Condition (c).

Observe that for 1≤ q < p∗ Hölder’s inequality implies

‖u‖q ≤ ‖u‖α
1 ‖u‖1−α

p∗ , α =
1
q

p∗ − q
p∗ − 1

∈ (0,1).

Now let M ⊂W1,p(Ω) be bounded; then this set is bounded in Lp∗(Ω) and hence there is a constant C < ∞ such that for all u ∈ M we
have

‖u‖q ≤ C‖u‖α
1

and it follows ∥∥τyu− u
∥∥

q ≤ 2C
∥∥τyu− u

∥∥α
1 , ∀ u ∈ M (1.28)

where we assume that for u∈W1,p(Ω) the translated element τyu is extended by zero outside Ω. Therefore it suffices to verify condition
(c) of Theorem 1.4.8 for the norm ‖·‖1. For i = 1,2, . . . introduce the sets

Ωi = {x ∈Ω : d(x,∂Ω) > 2/i} ,

where d(x,∂Ω) denotes the distance of the point x from the boundary ∂Ω of Ω. Another application of Hölder’s inequality gives, for
all u ∈ M,

∫
Ω\Ωi

|u(x)|Dx ≤
(∫

Ω\Ωi

|u(x)|p∗Dx
)1/p∗ (∫

Ω\Ωi

Dx
)1− 1

p∗

≤ ‖u‖p∗ |Ω\Ωi|1−
1

p∗ ≤ CM|Ω\Ωi|1−
1

p∗

where CM is a bound for M in Lp∗(Ω). Given ε > 0 we can therefore find i0 = i0(ε) such that for i ≥ i0∫
Ω\Ωi

|u(x)|Dx < ε/4
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holds for all u ∈ M. Extend u ∈ M outside Ω by 0 to get

û(x) =

{
u(x), x ∈Ω,
0, otherwise.

For a fixed i ≥ i0 and y ∈Rn, |y| < 1/i, we estimate∥∥τyu− u
∥∥

1 =
∫

Ωi

|u(x + y)− u(x)|Dx +
∫

Ω\Ωi

|û(x + y)− û(x)|Dx

≤
∫

Ωi

|u(x + y)− u(x)|Dx + ε/2

And the integral is estimated as follows (p′ denotes the Hölder conjugate exponent of p):

=
∫

Ωi

∣∣∣∣∫ 1

0

D
Dt

u(x + ty)Dt
∣∣∣∣Dx =

∫
Ωi

∣∣∣∣∫ 1

0
y · ∇u(x + ty)Dt

∣∣∣∣Dx ≤ |y|
∫

Ω2i

|∇u(x)|Dx

≤ |y||Ω2i|
1
p′ ‖∇u‖Lp(Ω2i)

≤ |y||Ω2i|
1
p′ C ≤ |y||Ω|

1
p′ C

It follows that there is r0 > 0 such that
∥∥τyu− u

∥∥
1 < ε for all |y| < r0. By estimate (1.28) we conclude that Condition (c) of Theorem

1.4.8 holds and therefore by this theorem M ⊂W1,p(Ω) is precompact in Lq(Ω). 2

Remark 1.4.11 The general case of Wk,p(Ω) with k > 1 follows from the following
observation which can be proven similarly.

For m ≥ 1 and 1
q >

1
p − m

n > 0 the inclusion of Wk,p(Ω) into Wk−m,q(Ω) is
compact.
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b b bbx y yxΓx,r Λy,r

B(x, r) B(y, r) B(x, r) B(y, r)

y + rΛ y + rΛx + rΓ x + rΓ

b b bbW V

B(x, r) B(y, r) B(x, r) B(y, r)

x y yx

W = Γx,r ∩ Γy,r r = |x − y| V = B(x, r) ∩ B(y, r)

Figure 1.1: Intersecting balls and the related sets Γx,r and Λy,r



Chapter 2

Hilbert-Schmidt and trace class operators

Abstract: This chapter introduces two subspaces of the space of compact oper-
ators and presents their theory in substantial detail. These spaces of operators
are important in various areas of functional analysis and in applications of op-
erator theory to quantum physics. Accordingly, after the characterization of
Hilbert-Schmidt and trace class operators has been presented, the spectral rep-
resentation for these operators is proven. Furthermore the dual spaces (spaces
of continuous linear functionals) of these two spaces of operators are deter-
mined and their rôle in the description of locally convex topologies on the
space B(H) of all bounded linear operators on a Hilbert spaceH is explained.
Finally two results are included which are mainly used in quantum physics:

35
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Partial trace for trace class operators on tensor products of separable Hilbert
spaces and Schmidt decomposition.

2.1 Basic theory

Since they are closely related we discuss Hilbert-Schmidt and trace class oper-
ators together.

Definition 2.1.1 A bounded linear operator A on a separable Hilbert spaceH is called
a Hilbert-Schmidt operator respectively a trace class operator if, and only if, for
some orthonormal basis {en : n ∈N} the sum

∞

∑
n=1
‖Aen‖2 =

∞

∑
n=1
〈en, A∗Aen〉

respectively the sum
∞

∑
n=1
〈en, |A|en〉 =

∞

∑
n=1

∥∥∥|A|1/2en

∥∥∥2

is finite, where |A| is the modulus of A (Definition 21.5.1).
The set of all Hilbert-Schmidt operators (trace class operators) on H is denoted by
B2(H) (B1(H)).
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Lemma 2.1.2 The two sums in Definition 2.1.1 do not dependent on the particular
basis and thus one defines the trace norm ‖·‖1 of a trace class operator A by

‖A‖1 =
∞

∑
n=1
〈en, |A|en〉 (2.1)

and the Hilbert-Schmidt norm ‖·‖2 of a Hilbert-Schmidt operator A by

‖A‖2 = ‖A∗A‖1/2
1 =

( ∞

∑
n=1
‖Aen‖2 )1/2 . (2.2)

Proof. Parseval’s identity implies for any two orthonormal bases {en : n ∈N} and { fn : n ∈N} ofH and any bounded linear operator
B

∞

∑
n=1
‖Ben‖2 =

∞

∑
n=1

∞

∑
m=1
|〈Ben, fm〉|2 =

∞

∑
m=1
‖B∗ fm‖2 .

Take another orthonormal basis {hn : n ∈N}, the same calculation then shows that we can continue the above identity by

∞

∑
n=1
‖B∗∗hn‖2 =

∞

∑
m=1
‖Ben‖2 ,

since B∗∗ = B, and hence this sum is independent of the particular basis. If we apply this identity for B = |A|1/2 we see that the defining
sum for trace class is independent of the particular choice of the basis. 2

Corollary 2.1.3 For every A ∈ B2(H) one has ‖A‖2 = ‖A∗‖2.

Proof. This is immediate from the proof of Lemma 2.1.2.
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Basic properties of the set of all Hilbert-Schmidt operators and of the Hilbert-
Schmidt norm are collected in the following theorem.

Theorem 2.1.4 a) B2(H) is a vector space which is invariant under taking adjoints,
i.e., A ∈ B2(H) if, and only if, A∗ ∈ B2(H); furthermore for all A ∈ B2(H),

‖A∗‖2 = ‖A‖2 ;

b) The Hilbert-Schmidt norm ‖·‖2 dominates the operator norm ‖·‖, i.e.,

‖A‖ ≤ ‖A‖2

for all A ∈ B2(H).

c) For all A ∈ B2(H) and all B ∈ B(H) one has AB ∈ B2(H) and BA ∈ B2(H)
with the estimates

‖AB‖2 ≤ ‖A‖2‖B‖ , ‖BA‖2 ≤ ‖B‖‖A‖2

i.e., B2(H) is a two-sided ideal in B(H).

d) The vector space B2(H) is a Hilbert space with the inner product

〈A, B〉HS =
∞

∑
n=1
〈Aen, Ben〉 = Tr(A∗B), A, B ∈ B2(H) (2.3)



2.1. BASIC THEORY 39

and the Hilbert-Schmidt norm is defined by this inner product by ‖A‖2 =
√
〈A, A〉HS.

Proof. a) It is obvious that scalar multiples λA of elements A ∈ B2(H) again belong to B2(H). If A, B ∈ B2(H) and if {en} is an ONB
then the estimate

‖(A + B)en‖2 ≤ 2(‖Aen‖2 + ‖Ben‖2)

immediately implies A + B ∈ B2(H). Thus B2(H) is a vector space. Corollary 2.1.3 now implies that for A ∈ B2(H) also A∗ ∈ B2(H)
and ‖A∗‖2 = ‖A‖2.

b) A given unit vector h ∈ H can be considered as an element of an ONB {en}, therefore we can estimate for A ∈ B2(H)

‖Ah‖2 ≤∑
n
‖Aen‖2 = ‖A‖2

2 ,

and it follows
‖A‖ = sup{‖Ah‖ : h ∈ H,‖h‖ = 1} ≤ ‖A‖2 .

c) For A∈B2(H) and B∈B(H) and every basis vector en one has ‖BAen‖2≤‖B‖2 ‖Aen‖2 and thus (2.2) implies ‖BA‖2≤‖B‖‖A‖2.
Next part a) says ‖AB‖2 = ‖(AB)∗‖2 = ‖B∗A∗‖2 ≤ ‖B∗‖‖A∗‖2 = ‖B‖‖A‖2. And it follows AB, BA ∈ B2(H).

d) For an ONB {en} and any A, B ∈ B2(H) one has, using Schwarz’ inequality twice,

∑
n
|〈Aen, Ben〉| ≤ ‖A‖2 ‖B‖2 .

We conclude that (2.3) is well defined on B2(H) and then that it is a anti-linear in the first and linear in the second argument. Obviously
〈A, A〉HS ≥ 0 for all A ∈ B2(H) and 〈A, A〉HS = 0 if, and only if, Aen = 0 for all elements en of an ONB of H, hence A = 0. Therefore
(2.3) is an inner product on B2(H) and clearly this inner product defines the Hilbert-Schmidt norm.

Finally we show completeness of this inner product space. Suppose that {An} is a Cauchy sequence in B2(H). Then, given ε > 0,
there is n0 such that ‖Am − An‖2 ≤ ε for all m,n≥ n0. Since ‖A‖ ≤ ‖A‖2 this sequence is also a Cauchy sequence in B(H) and hence it
converges to a unique A ∈ B(H), by Theorem 21.3.3. For an ONB

{
ej
}

, n ≥ n0, and all N ∈N we have

N

∑
j=1

∥∥(A− An)ej
∥∥2

= lim
m→∞

N

∑
j=1

∥∥(Am − An)ej
∥∥2 ≤ lim

m→∞
‖Am − An‖2

2 ≤ ε2

and conclude
∞

∑
j=1

∥∥(A− An)ej
∥∥2 ≤ ε2.
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This shows A− An ∈ B2(H), hence A = An + (A− An) ∈ B2(H) and ‖A− An‖2 ≤ ε for n≥ n0 and A is the limit of the sequence {An}
in the Hilbert-Schmidt norm. 2

Though trace class operators share many properties with Hilbert-Schmidt op-
erators, some of the proofs are more complicated. For instance the fact that the
modulus of a bounded linear operator is not subadditive does not allow such
a simple proof of the fact that the set of all trace class operators is closed un-
der addition of operators, as in the case of Hilbert-Schmidt operators. For this
and some other important properties the following proposition will provide
substantial simplifications in the proofs (see also 9).

Proposition 2.1.5 For a bounded linear operator A on H the following statements
are equivalent:

(a) For some (and then for every) ONB {en} one has S1(A) = ∑n〈en, |A|en〉 < ∞.

(b) S2(A) = inf{‖B‖2‖C‖2 : B,C ∈ B2(H), A = BC} < ∞.

(c) S3(A) = sup{∑n |〈en, A fn〉| : {en} ,{ fn} are ONS inH} < ∞

For A ∈ B1(H) one has S1(A) = S2(A) = S3(A) = ‖A‖1.
Proof. Suppose S1(A) < ∞. Write the polar decomposition A = U|A| as A = BC with B = U|A|1/2 and C = |A|1/2. Then

‖B‖2
2 = ∑

n

∥∥∥U|A|1/2en

∥∥∥2
≤∑

n

∥∥∥|A|1/2en

∥∥∥2
= S1(A) < ∞
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and ‖C‖2
2 = S1(A) < ∞ and thus S2(A) ≤ S1(A) < ∞.

Next suppose that S2(A) < ∞ and take any ONS {en} and { fn} inH. Write A = BC with B,C ∈ B2(H) and estimate

∑
n
|〈en, A fn〉| = ∑

n
|〈B∗en,C fn〉| ≤

(
∑
n
‖B∗en‖2 )1/2(∑

n
‖C fn‖2 )1/2

≤ ‖B∗‖2 ‖C‖2 = ‖B‖2 ‖C‖2 .

It follows S3(A) ≤ S2(A) < ∞.
Finally assume that S3(A)< ∞ and take an ONB {en} for Ran(|A|). Then fn = Uen is an ONB for Ran(A) and thus we can estimate

S1(A) = ∑
n
〈en, |A|en〉 = ∑

n
〈en,U∗Aen〉 = ∑

n
〈 fn, Aen〉 ≤ S3(A),

and therefore S1(A) ≤ S3(A) < ∞.
If A ∈ B1(H), then by definition S1(A) < ∞. The above chain of estimates shows S3(A) ≤ S2(A) ≤ S1(A) ≤ S3(A) and thus we

have equality. 2

Theorem 2.1.6 a) B1(H) is a vector space which is invariant under taking adjoints,
i.e., A ∈ B1(H) if, and only if, A∗ ∈ B1(H); furthermore for all A ∈ B1(H),

‖A∗‖1 = ‖A‖1 ;

b) The trace norm ‖·‖1 dominates the operator norm ‖·‖, i.e.,

‖A‖ ≤ ‖A‖1

for all A ∈ B1(H).
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c) For all A ∈ B1(H) and all B ∈ B(H) one has AB ∈ B1(H) and BA ∈ B1(H)
with the estimates

‖AB‖1 ≤ ‖A‖1‖B‖ , ‖BA‖1 ≤ ‖B‖‖A‖1

i.e., B1(H) is a two-sided ideal in B(H).

d) The vector space B1(H) is a Banach space under the trace norm ‖·‖1.

Proof. a) For a scalar multiple λA of A ∈ B1(H) one obviously has S1(λA) = |λ|S1(A) and thus λA ∈ B1(H) and ‖λA‖1 = |λ| ‖A‖1.
A simple calculation shows S3(A∗) = S3(A) and therefore by Proposition 2.1.5, A∗ ∈ B1(H) whenever A ∈ B1(H) and ‖A∗‖1 = ‖A‖1.

For A, B∈ B1(H) we know by Proposition 2.1.5 that S3(A) and S3(B) are finite. From the definition of S3(·) we read off S3(A+ B)≤
S3(A) + S3(B), thus S3(A + B) is finite, i.e., A + B ∈ B1(H).

If for A ∈ B1(H) one has ‖A‖1 = 0, then |A|1/2en = 0 for all elements of an ONB {en} of H, hence |A|1/2 = 0 and thus A = 0.
Therefore the trace norm ‖·‖1 is indeed a norm on the vector space B1(H).

b) Given unit vectors e, f ∈ H we can consider them as being an element of an ONS {en} respectively of an ONS { fn} ; then

|〈e, A f 〉| ≤∑
n
|〈en, A fn〉| ≤ S3(A),

it follows
‖A‖ = sup{|〈e, A f 〉| : e, f ∈ H,‖e‖ = ‖ f ‖ = 1} ≤ S3(A) = ‖A‖1 .

c) If A ∈ B1(H) has a decomposition A = CD with C, D ∈ B2(H), then for any B ∈ B(H), BA has a decomposition BA = BCD with
BC, D ∈ B2(H), by Theorem 2.1.4, part c). We conclude

S2(BA) ≤ ‖BC‖2 ‖D‖2 ≤ ‖B‖‖C‖2 ‖D‖2

and thus S2(BA) ≤ ‖B‖S2(A) < ∞. It follows ‖BA‖1 ≤ ‖B‖‖A‖1. Since we have established that B1(H) is invariant under taking
adjoints, we can prove AB ∈ B1(H) as in the case of Hilbert-Schmidt operators.

d) Finally we show completeness of the normed space B1(H). Suppose that {An} is a Cauchy sequence in B1(H). Then, given
ε > 0, there is n0 such that ‖Am − An‖1 ≤ ε for all m,n ≥ n0. Since ‖A‖ ≤ ‖A‖1 this sequence is also a Cauchy sequence in B(H) and
hence it converges to a unique A ∈ B(H), by Theorem 21.3.3.
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Fix n ≥ n0; for any ONS
{

ej
}

and
{

f j
}

inH and any N ∈N we have

N

∑
j=1
|〈ej, (A− An) f j〉| = lim

m→∞

N

∑
j=1
|〈ej, (Am − An) f j〉| ≤ lim

m→∞
S3(Am − An) ≤ ε

and conclude
∞

∑
j=1
|〈ej, (A− An) f j〉| ≤ ε.

This shows A− An ∈ B1(H), hence A = An + (A− An) ∈ B1(H) and ‖A− An‖1 ≤ ε. 2

Corollary 2.1.7 The space of trace class operators is continuously embedded into the
space of Hilbert-Schmidt operators:

B1(H) ↪→B2(H).
Proof. According to the definitions one has ‖A‖2

2 = ‖A∗A‖1. When we apply parts c), b), and a) in this order we can estimate

‖A∗A‖1 ≤ ‖A∗‖‖A‖1 ≤ ‖A∗‖1 ‖A‖1 = ‖A‖2
1

and thus ‖A‖2 ≤ ‖A‖1 which implies our claim. 2

Corollary 2.1.8 On the space of all trace class operators the trace is well defined by
({en} is any ONB ofH)

Tr(A) = ∑
n
〈en, Aen〉, A ∈ B1(H) . (2.4)

This function Tr : B1(H) −→K is linear and satisfies for all A ∈ B1(H)
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a) |Tr(A)| ≤ ‖A‖1;

b) Tr(A∗) = Tr(A);

c) Tr(AB) = Tr(BA); for all B ∈ B1(H);

d) Tr(UAU∗) = Tr(A); for all unitary operators U onH.
Proof. We know that A ∈ B1(H) can be written as A = BC with B,C ∈ B2(H). For any ONB {en} we estimate

∑
n
|〈en, Aen〉| ≤∑

n
‖B∗en‖‖Cen‖ ≤ ‖B∗‖2 ‖C‖2 = ‖B‖2 ‖C‖2 < ∞

and conclude
∑
n
|〈en, Aen〉| ≤ S2(A) = ‖A‖1 .

As earlier one proves that the sum in (2.4) does not depend on the choice of the particular basis. Linearity in A ∈ B1(H) is obvious.
Thus a) holds. The proof of b) is an elementary calculation.

If A, B ∈ B1(H) choose another ONB { fm} and use the completeness relation to calculate

∑
n
〈en, ABen〉 = ∑

n
〈A∗en, Ben〉 = ∑

n
∑
m
〈A∗en, fm〉〈 fm, Ben〉 =

=∑
m

∑
n
〈B∗ fm, en〉〈en, A fm〉 = ∑

m
〈B∗ fm, A fm〉 = ∑

m
〈 fm, BA fm〉,

hence c) holds, since we know that the above series converge absolutely so that the order of summation can be exchanged. Part d) is
just a reformulation of the fact that the trace is independent of the basis which is used to calculate it. 2

Theorem 2.1.9 (Spectral representation of Hilbert-Schmidt and trace class operators)
Let H be a separable Hilbert space and denote by Bc(H) the space of all compact op-
erators onH (see Theorem 22.3.1). Then
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a) B2(H)⊂Bc(H), i.e., Hilbert-Schmidt and thus trace class operators are compact.

b) A bounded operator A on H is a Hilbert-Schmidt operator respectively a trace
class operator if, and only if, there are two orthonormal bases {en} and {xn} ofH
and there is a sequence {λn} in K with

∑
n
|λn|2 < ∞ respectively ∑

n
|λn| < ∞

such that
Ax = ∑

n
λn〈en, x〉xn for all x ∈ H (2.5)

and then one has

‖A‖2 =
(
∑
n
|λn|2

)1/2 respectively ‖A‖1 = ∑
n
|λn|.

Proof. a) Suppose that {en} is an ONB of H; denote by PN the orthogonal projector onto the closed subspace [e1, . . . , eN ] spanned by
e1, . . . , eN . Then for A ∈ B2(H) one has

‖A− APN‖2
2 = ∑

n
‖(A− APN)en‖2 =

∞

∑
n=N+1

‖Aen‖2 ,

hence ‖A− APN‖ ≤ ‖A− APN‖2 −→ 0 as N→∞. Therefore A is the norm limit of the sequence of finite rank operators APN and thus
compact by Theorem 22.3.2.

By Corollary 2.1.7 we know B1(H) ⊂ B2(H), hence trace class operators are compact.
b) Suppose that A ∈ Bj(H), j = 1 or j = 2, is given. By part a) we know that A and its modulus |A| are compact. The polar

decomposition (Theorem 21.5.2) relates A and |A| by A = U|A| where U is a partial isometry from ran |A| to ranA.



46 CHAPTER 2. HILBERT-SCHMIDT AND TRACE CLASS OPERATORS

According to the Riesz-Schauder Theorem (??) the compact operator |A| has the following spectral representation:

|A|x = ∑
j

λj〈ej, x〉ej for all x ∈ H (2.6)

with the specifications:

(i) λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn ≥ 0 are the eigen-values of |A| enumerated in decreasing order and repeated in this list according to
their multiplicity;

(ii)
{

ej
}

are the normalized eigen-vectors for the eigen-values λj;

(iii) the multiplicity of every eigen-value λj > 0 is finite, and if there are infinitely many eigen-values then λj −→ 0 as j→∞.

If the ONS
{

ej
}

is not complete we can extend it to an ONB {e′n} ofH and calculate, using (2.6),

‖A‖1 = ∑
n
〈e′n, |A|e′n〉 = ∑

j
λj < ∞ for A ∈ B1(H),

respectively

‖A‖2
2 = ∑

n

∥∥|A|e′n∥∥2
= ∑

j
λ2

j < ∞ for A ∈ B2(H).

If we apply the partial isometry U to the representation (2.6) we get (2.5) with xn = Uen.
Conversely suppose that an operator A has the representation (2.5). If ∑n |λn|2 < ∞ holds one has

∑
j

∥∥Axj
∥∥2

= ∑
j

∑
n
|λn〈en, xj〉|2 = ∑

n
|λn|2 ∑

j
|〈en, xj〉|2 = ∑

n
|λn|2,

thus ‖A‖2
2 = ∑n |λn|2 < ∞ and therefore A ∈ B2(H).

Suppose that ∑n |λn| < ∞ holds. In the Exercises we show that (2.5) implies

|A|x = ∑
n
|λn|〈en, x〉en, x ∈ H.

It follows ‖A‖1 = Tr(|A|) = ∑n |λn| < ∞, hence A ∈ B1(H) and we conclude.
2
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Remark 2.1.10 One can define Hilbert-Schmidt and trace class operator also for the
case of operators between two different Hilbert spaces as follows: For two separa-
ble Hilbert spaces H1 and H2 a bounded linear operator A : H1 −→ H2 is called a
Hilbert-Schmidt operator if, and only if, there is an orthonormal basis {en} of H1

such that
∞

∑
n=1
‖Aen‖2

2 < ∞

where ‖·‖2 is the norm ofH2.
A bounded linear operator A : H1 −→ H2 is called a trace class operator or a

nuclear operator if, and only if, its modulus |A| =
√

A∗A is a trace class operator
onH1.

With this slightly more general definitions the results presented above still hold
with obvious modifications. We mention the spectral representation of Theorem 2.1.9.

A bounded linear operator A :H1 −→H2 is a Hilbert-Schmidt respectively a trace
class operator if, and only if, it is of the form

Ax =
∞

∑
n=1

λn〈e1
n, x〉1e2

n, for all x ∈ H1 (2.7)

where
{

ei
n
}

is an orthonormal system in Hi, i = 1,2 and where the sequence of num-
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bers λn 6= 0 satisfies ∑n |λn|2 < ∞ respectively ∑n |λn| < ∞.

2.2 Dual spaces for the spaces of compact and trace class operators

The space of linear operators on H which have a finite rank is denoted by
B f (H). The following corollary highlights important results which in essence
have been proven already in the last few theorems.

Corollary 2.2.1 For any separable Hilbert spaceH one has

B f (H) ⊂ B1(H) ⊂ B2(H) ⊂ Bc(H) ⊂ B(H)

and all the embeddings are continuous and dense. B f (H) is dense in Bj(H), j = 1,2
and in Bc(H).
Proof. In the proofs of the last two results it was shown in particular that

B f (H) ⊂ Bj(H) ⊂ Bc(H), j = 1,2

holds and that the finite rank operators are dense in Bc(H) and in Bj(H) for j = 1,2 . Parts b) of Theorem 2.1.4 respectively Theorem
2.1.6 imply that the embeddings Bj(H) ↪→Bc(H), j = 1,2, are continuous when Bc(H) is equipped with the operator norm. By Corol-
lary 2.1.7 we conclude. 2

According to Theorem 2.1.4 the space of Hilbert-Schmidt operators B2(H) is a
Hilbert space. Hence, according to the definition of the inner product (2.3) the
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continuous linear functionals f on this space are given by

f (A) = Tr(BA) for all A ∈ B2(H), for some B = B f ∈ B2(H) . (2.8)

Part c) of Theorem 2.1.6 says that the space of the trace class operators is a
two-sided ideal in B(H), hence Tr(BA) is well defined for all B ∈ B(H) and
all A ∈ B1(H) and Part a) of Corollary 2.1.8 allows to estimate this trace by

|Tr(BA)| ≤ ‖B‖‖A‖1 . (2.9)

Therefore, for fixed B ∈ B(H), fB(A) = Tr(BA) is a continuous linear func-
tional on B1(H), and for fixed A ∈ B1(H), gA(B) = Tr(BA) is a continuous
linear functional on B(H). Here we are interested in the space B1(H)′ of all
continuous linear functionals on B1(H) and in the space Bc(H)′ of all contin-
uous linear functionals on Bc(H) ⊂ B(H). Note that according to Corollary
2.2.1 the restriction of a continuous linear functional on Bc(H) to B2(H) is a
continuous linear functional on B2(H) and thus given by the trace, i.e., for-
mula (2.8).
Theorem 2.2.2 For a separable HilbertH the space of all continuous linear function-
als Bc(H)′ on the space Bc(H) of all compact operators onH and the space B1(H) of
all trace class operators are (isometrically) isomorphic, i.e.,

Bc(H)′ ∼= B1(H) .
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The isomorphism B1(H) −→ Bc(H)′ is given by B −→ φB with

φB(A) = Tr(BA) for all A ∈ Bc(H). (2.10)

Proof. As mentioned above, given F ∈ Bc(H)′, we know F|B2(H) ∈ B2(H)′ and thus there is a unique B ∈ B2(H) such that

F(A) = Tr(BA) for all A ∈ B2(H).

In order to show that actually B ∈ B1(H) we use the characterization of trace class operators as given in Proposition 2.1.5 and estimate
S3(B). To this end take any two ONS {en} and { fn} inH and observe that there is αn ∈R such that

eiffn〈 fn, Ben〉 = |〈 fn, Ben〉|.

Introduce the finite rank operators [en, fn] defined by [en, fn]x = 〈 fn, x〉en and then the finite rank operators

Am =
m

∑
n=1

eiffn [en, fn].

Since ‖Amx‖2 = ∑m
n=1 |〈 fn, x〉|2 ≤ ‖x‖2, one has ‖Am‖ ≤ 1. Thus we write, for any m ∈N,

m

∑
n=1
|〈 fn, Ben〉| =

m

∑
n=1

eiffn〈 fn, Ben〉 = Tr(BAm) = F(Am)

since 〈 fn, Ben〉 = Tr(B[en, fn]). We conclude
m

∑
n=1
|〈 fn, Ben〉| ≤ ‖F‖′ ,

thus S3(B) ≤ ‖F‖′ and hence B ∈ B1(H). Introduce the continuous linear functional φB : Bc(H) −→K by

φB(A) = Tr(BA) for all A ∈ Bc(H).

We conclude that every F ∈ Bc(H)′ is of the form F = φB with a unique B ∈ B1(H). Now by (2.9) it follows

‖F‖′ = sup{|F(A)| : A ∈ Bc(H),‖A‖ ≤ 1} ≤ ‖B‖1 .
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In order to show ‖F‖′ = ‖φB‖′ = ‖B‖1 recall that ‖B‖1 = Tr(|B|) when B has the polar decomposition B = U|B| with a partial isometry
U. For an ONB {en} ofH form the finite rank operator Am = ∑m

n=1[en, en]U∗ and calculate

Tr(BAm) = Tr(AmB) = Tr(
m

∑
n=1

[en, en]U∗B) =
m

∑
n=1

Tr([en, en]|B|) =
m

∑
n=1
〈en, |B|en〉.

It follows

‖φB‖′ ≥ |Tr(BAm)| ≥
m

∑
n=1
〈en, |B|en〉

for all m ∈N and thus ‖φB‖′ ≥ ‖B‖1, and we conclude. Basic properties of the trace show that the map B −→ φB is linear. Hence this
map is an isometric isomorphism form B1(H) to Bc(H)′. 2

In a similar way one can determine the dual space of the space of all trace class
operators.

Theorem 2.2.3 For a separable HilbertH the space of all continuous linear function-
als B1(H)′ on the space B1(H) of all trace class operators on H and the space B(H)
of all bounded linear operators are (isometrically) isomorphic, i.e.,

B1(H)′ ∼= B(H) .

The isomorphism B(H) −→ B1(H)′ is given by B −→ ΨB where

ΨB(A) = Tr(BA) for all A ∈ B1(H). (2.11)
Proof. In a first step we show that given f ∈ B1(H)′ there is a unique B = B f ∈ B(H) such that f = ψB where again ψB is defined by
the trace, i.e., ΨB(A) = Tr(BA) for all A ∈ B1(H). For all x,y ∈ H define

b f (x,y) = f ([y, x])
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where the operator [y, x] is defined as above. Since [y, x] ∈ B f (H) ⊂ B1(H), b f is well-defined on H × H. Linearity of f implies
immediately that b f is a sesquilinear form onH. This form is continuous: For all x,y ∈ H the estimate

|b f (x,y)| = | f ([y, x])| ≤ ‖ f ‖′ ‖[y, x]‖1 ≤ ‖ f ‖′ ‖x‖‖y‖
holds, since by Proposition 2.1.5 one has, using Schwarz’ and Bessel’s inequality, ‖[y, x]‖1 = S3([y, x])≤ ‖x‖‖y‖. Therefore by Theorem
20.2.1 there is a unique bounded linear operator B such that b f (x,y) = 〈x, By〉, i.e.,

f ([y, x]) = 〈x, By〉 = Tr(B[y, x]) for all x,y ∈ H.

The last identity follows from the completeness relation for an ONB {en} of H: Tr(B[y, x]) = ∑n〈en, B[y, x]en〉 = ∑n〈en, By〈x, en〉〉 =
∑n〈en, By〉〈x, en〉= 〈x, By〉. By linearity this representation of f is extended to B f (H)⊂ B1(H). And since both f and Tr are continuous
with respect to the trace norm this representation has a unique extension to all of B1(H) (B f (H) is dense in B1(H)):

f (A) = Tr(BA) = ΨB(A) for all A ∈ B1(H).

Linearity of Tr implies easily that B −→ B1(H)′ is a linear map from B(H) to B1(H)′. Finally we show that this map is isometric.
The continuity estimate (2.9) for the trace gives for B ∈ B(H)

‖ΨB‖′ = sup{|ΨB(A)| : A ∈ B1(H),‖A‖1 ≤ 1} ≤ ‖B‖ .

We can assume B 6= 0. Then ‖B‖> 0 and there is x ∈ H, ‖x‖ ≤ 1 such that ‖Bx‖ ≥ ‖B‖ − ε for any ε ∈ (0,‖B‖). Introduce ξ = Bx
‖Bx‖ and

calculate as above
ΨB([x,ξ]) = Tr(B[x,ξ]) = 〈ξ, Bx〉 = ‖Bx‖ ≥ ‖B‖ − ε,

hence ‖ΨB‖′ ≥ ‖B‖ − ε. This holds for any 0 < ε < ‖B‖. We conclude

‖ΨB‖′ ≥ ‖B‖
and thus ‖ΨB‖′ = ‖B‖ and B −→ ΨB is an isometric map from B(H) onto B1(H)′.

2

Remark 2.2.4 According to this result one has the following useful expressions for
the trace norm and the operator norm: The trace norm of T ∈ B1(H) is given by

‖T‖1 = sup |Tr(BT)| (2.12)
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where the sup is taken over all B ∈ B(H) with ‖B‖ = 1 and similarly the norm of
B ∈ B(H) is

‖B‖ = sup |Tr(BT)| (2.13)

where the sup is taken over all T ∈ B1(H) with ‖T‖1 = 1. Since B1(H) is generated
by the cone of its positive elements one also has

‖B‖ = sup |Tr(BW)| (2.14)

where the sup is taken over all density matrices W, i.e., W ∈ B1(H), W ≥ 0, and
‖W‖1 = Tr(W) = 1.

Remark 2.2.5 It is instructive to compare the chain of continuous dense embeddings

B f (H) ↪→B1(H) ↪→B2(H) ↪→Bc(H) ↪→B(H) (2.15)

for the spaces of bounded linear operators on a separable Hilbert spaceH over the field
K with the chain of embeddings for the corresponding sequence spaces

` f (K) ↪→ `1(K) ↪→ `2(K) ↪→ c0(K) ↪→ `∞(K) (2.16)

where ` f (K) denotes the space of terminating sequences and c0(K) the space of null
sequences. And our results on the spectral representations of operators in B1(H),
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B2(H), and Bc(H) indicate how these spaces are related to the sequence spaces `1(K),
`2(K), and c0(K).

For these sequence spaces it is well known that `∞(K) is the topological dual of
`1(K), `1(K)′ ∼= `∞(K), and that `1(K) is the dual of c0(K), c0(K)′ ∼= `1(K), as
the counterpart of the last two results: B1(H)′ ∼= B(H) and Bc(H)′ ∼= B1(H).

2.3 Related locally convex topologies on B(H)

Recall that in Section 21.4 we introduced the weak and the strong operator
topologies on B(H) as the topology of pointwise weak respectively pointwise
norm convergence. In the study of operator algebras some further topologies
play an important rôle. Here we restrict our discussion to the operator algebra
B(H), respectively subalgebras of it. Recall also that in the second chapter we
had learned how to define locally convex topologies on vector spaces in terms
of suitable systems of seminorms. This approach we use here again. We begin
by recalling the defining seminorms for the strong and the weak topology.

The strong topology on B(H) is defined by the system of seminorms px,
x ∈ H, with

px(A) = ‖Ax‖ , A ∈ B(H).
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Sometimes it is important to have a topology on B(H) with respect to which
the involution ∗ on B(H) is continuous. This is the case for the strong* topol-
ogy defined by the system of seminorms p∗x, x ∈ H, with

p∗x(A) =

√
‖Ax‖2 + ‖A∗x‖2, A ∈ B(H).

The weak topology on B(H) is defined by the system for seminorms px,y,
x,y ∈ H, with

px,y(A) = |〈x, Ay〉|, A ∈ B(H).

Similarly one defines the σ-weak and σ-strong topologies on B(H). Often
these topologies are also called ultraweak respectively ultrastrong topology.

The σ-strong topology on B(H) is defined in terms of a system of semi-
norms q = q{en}, {en} ⊂ H, ∑n ‖en‖2 < ∞, with

q(A) =

(
∑
n
‖Aen‖2

)1/2

, A ∈ B(H).

And the σ-strong* topology is defined by the system of seminorm q∗, q as
above, with

q∗(A) = (q(A)2 + q(A∗)2)1/2, A ∈ B(H).
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Next suppose that {en} and {gn} are two sequences in H which satisfy
∑n ‖en‖2 <∞ and ∑n ‖gn‖2 <∞. Then a continous linear functional T = T{en},{gn}
is welldefined on B(H) by (see Exercises)

T(A) = ∑
n
〈gn, Aen〉, A ∈ B(H). (2.17)

Now the σ-weak topology on B(H) is defined by the system of seminorms pT,
T as above, by

pT(A) = |T(A)| = |∑
n
〈gn, Aen〉|.

Using the finite rank operators [en, gn] introduced earlier we can form the op-
erator T̂ = ∑n[en, gn]. For any two orthonormal systems

{
xj
}

and
{

yj
}

in H
we estimate by Schwarz’ and Bessel’s inequalities

∑
j
|〈xj, [en, gn]yj〉| = ∑

j
|〈xj, en〉〈gn,yj〉| ≤ ‖en‖‖gn‖

and thus
∑

j
|〈xj, T̂yj〉| ≤∑

n
‖en‖‖gn‖ < ∞.

Proposition 2.1.5 implies that T̂ is a trace class operator onH. In the Exercises
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we show that for all A ∈ B(H)

Tr(AT̂) = ∑
n
〈gn, Aen〉 = T(A), (2.18)

hence the functional T of (2.17) is represented as the trace of the trace class
operator T̂ multiplied by the argument of T.

According to Theorem 2.2.2 the Banach space dual of the space of com-
pact operators Bc(H) is isometrically isomorphic to the space B1(H) of trace
class operators on H and according to Theorem 2.2.3 the Banach space dual
of B1(H) is isometrically isomorphic to the space B(H) of all bounded linear
operators onH.

Thus we can state:

The σ-weak or ultraweak topology on B(H) is the weak∗-topology
from the identification of B(H) with the dual of B1(H), i.e., the topol-
ogy generated by the family of semi-norms

{
pT̂ : T̂ ∈ B1(H)

}
defined

by pT̂(A) = |Tr(T̂A)| = |T(A)| for A ∈ B(H).

It is easy to verify that the weak topology onB(H) is the dual topology σ(B(H),
B f (H)).
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Recall also that nonnegative trace class operators are of the form T̂ =∑n[en, en]
with ∑n ‖en‖2 < ∞. For A ∈ B(H) we find

Tr(A∗AT̂) = ∑
n
‖Aen‖2 = T(A∗A)

where T is the functional on B(H) which corresponds to T̂ according to (2.18).
Hence the defining seminorms q for the σ-strong topology are actually of the
form

q(A) = (T(A∗A))1/2 = (Tr(A∗AT̂))1/2.

From these definitions it is quite obvious how to compare these topologies
on B(H): The σ-strong* topology is finer than the σ-strong topology which in
turn is finer than the σ-weak topology. And certainly the σ-strong* topology
is finer than the strong* topology and the σ-strong topology is finer than the
strong topology which is finer than the weak topology. Finally the σ-weak
topology is finer than the weak topology. Obviously the uniform or norm
topology is finer than the σ-strong* topology. Nevertheless one has the fol-
lowing convenient result:

Lemma 2.3.1 On the closed unit ball B = {A ∈ B(H) : ‖A‖ ≤ 1} the following
topologies are the same:
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a) the weak and the σ-weak;

b) the strong and the σ-strong;

c) the strong* and the σ-strong*.

Proof. Since the proofs of these three statements are very similar we offer explicitly only the proof of b).
Clearly it suffices to show that for every neighborhood U of the origin for the σ-strong topology there is a neighborhood V of

the origin for the strong toplogy such that V ∩ B ⊂ U ∩ B. Such a neighborhood U is of the form U = {A ∈ B(H) : q(A) < r} with
r > 0 and q(A)2 = ∑n ‖Aen‖2 for some sequence en ∈ H with ∑n ‖en‖2 < ∞. Thus there is m ∈ N such that ∑∞

n=m+1 ‖en‖2 < r2/2.

Define a neighborhood V of the origin for the strong topology by V =
{

A ∈ B(H) : p(A) < r/
√

2
}

with the norm p given by p(A)2 =

∑m
n=1 ‖Aen‖2. Now for A ∈ V ∩ B we estimate

q(A)2 =
m

∑
n=1
‖Aen‖2 +

∞

∑
n=m+1

‖Aen‖2 ≤
m

∑
n=1
‖Aen‖2 +

∞

∑
n=m+1

‖en‖2 < r2/2 + r2/2 = r2

and conclude A ∈U ∩ B. 2

In addition continuity of linear functionals are the same within two groups
of these topologies as the following theorem shows.

Theorem 2.3.2 Suppose thatK⊂B(H) is a linear subspace which is σ-weakly closed.
Then for every bounded linear functional T on K the following groups of equivalence
statements hold.

1) The following statements about T are equivalent:



60 CHAPTER 2. HILBERT-SCHMIDT AND TRACE CLASS OPERATORS

(a) T is of the form T(·) = ∑m
j=1〈yj, ·xj〉 for some points xj,yj ∈ H;

(b) T is weakly continuous;
(c) T is strongly continuous;
(d) T is strongly* continuous.

2) The following statements about T are equivalent (B is the closed unit ball in
B(H)):

(a) T is of the form T(·) = ∑∞
j=1〈yj, ·xj〉 for some sequences xj,yj ∈ H with

∑j

∥∥xj
∥∥2

< ∞ and ∑j

∥∥yj
∥∥2

< ∞;
(b) T is σ-weakly continuous;
(c) T is σ-strongly continuous;
(d) T is σ-strongly* continuous;
(e) T is weakly continuous on K ∩ B ;
(f) T is strongly continuous on K ∩ B;
(g) T is strongly* continuous on K ∩ B.

Proof. Since the first group of equivalence statements is just a ‘finite’ variant of the second we do not prove it explicitly.
For the proof of 2) we proceed in the order a. ⇒ b.⇒ c. ⇒ d. ⇒ a. If a. is assumed then

A 7→ |T(A)| = |∑
j
〈yj, Axj〉|
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is obviously a defining seminorm for the σ-weak topology. If we apply the Cauchy-Schwarz inequality twice this seminorm is estimated
by

(∑
j

∥∥yj
∥∥2
)1/2(∑

j

∥∥Axj
∥∥2
)1/2

which is a continuous seminorm for the σ-strong topology and thus T is also σ-strongly continuous. Another elementary estimate now
proves d.

The only non-tivial part of the proof is the implication d. ⇒ a. . If T is σ-strongly* continuous there is a sequences
{

xj
}

with

∑j
∥∥xj
∥∥2

< ∞ such that for all A ∈ K

|T(A)|2 ≤
∞

∑
j=1

(
∥∥Axj

∥∥2
+
∥∥A∗xj

∥∥ |2) . (2.19)

Form the direct sum Hilbert space

H̃ =
∞⊕

j=1

(Hj ⊕H′j) = `2(H⊕H′)

where H′j is the dual of Hj = H for all j ∈ N. For A ∈ B(H) define an operator Ã on H̃ by setting for ỹ ∈ H̃ with components
yj ⊕ y′j ∈ Hj ⊕H′j

(Ãỹ)j = Ayj ⊕ (A∗yj)
′, j ∈N.

A straightforward estimate shows ∥∥Ãỹ
∥∥
H̃ ≤ (‖A‖2 + ‖A∗‖2)1/2 ‖ỹ‖H̃ .

On the subspace
K̃ =

{
Ãx̃ : A ∈ K

}
of H̃ where x̃ is defined by the sequence

{
xj
}

of the estimate (2.19), define the map T̃ by setting

T̃(Ãx̃) = T(A).

By (2.19) it follows that T̃ is a welldefined bounded linear map K̃ →K (recall that Hj →H′j is antilinear). Theorems 15.3.2 (extension
theorem) and 15.3.1 (Riesz-Fréchet) imply that there is an element ỹ in the closure of the subspace K̃ in H̃ such that

T̃(Ãx̃) = 〈ỹ, Ãx̃〉H̃
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for all A ∈ K, thus by expanding the inner product of H̃

T(A) = T̃(Ãx̃) = ∑
j
(〈yj, Axj〉H + 〈y′j, (A∗xj)

′〉H′) = ∑
j
(〈yj, Axj〉H + 〈xj, Ayj〉H)

and therefore T is of form given in statement a..
The remaining part of the proof follows with the help of Lemma 2.3.1 and Corollary ?? which says that a linear functional is con-

tinuous if, and only if, it is continuous at the origin (see also the Exercises). 2

Remark 2.3.3 A considerably more comprehensive list of conditions under which
these various locally convex topologies on B(H) agree is available in Chapter II of
24.

2.4 Partial Trace and Schmidt decomposition in separable Hilbert spaces

2.4.1 Partial Trace

The first guess for defining the partial trace in the case of infinite dimensional
Hilbert spaces Hj would be, in analogy to the the case of finite dimensional
Hilbert spaces, to start with the matrix representation of A ∈ B1(H1 ⊗ H2)
with respect to an orthonormal basis

{
ej ⊗ fk

}
ofH1⊗H2 and to calculate the

usual sums with respect to one of the ONBs
{

ej
}

respectively { fk}. However
infinite sums might be divergent, and we have found no useful way to express
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the fact that A is of trace class in terms of properties of the matrix entries

Aj1k1;j2k2 j1, j2,k1,k2 ∈N.

But such a procedure can be imitated by introducing a suitable quadratic
form and investigate its properties (see 3).

Theorem 2.4.1 (Existence, definition and basic properties of partial trace) Let
H1 andH2 be two separable complex Hilbert spaces. Then there is a linear map

T : B1(H1⊗H2) −→ B1(H1)

from the space of trace class operators on H1 ⊗H2 into the space of trace class oper-
ators on H1 which is continuous with respect to the trace norm. It has the following
properties

T(A1⊗ A2) = A1TrH2(A2) for all Ai ∈ B1(Hi), i = 1,2 ; (2.20)

TrH1(T(A)) = TrH1⊗H2(A) for all A ∈ B1(H1⊗H2) ; (2.21)

T((A1⊗ I2)A) = A1T(A) for all A1 ∈B(H1), and all A∈B1(H1⊗H2) ; (2.22)

where I2 denotes the identity operator on H2 and B(H1) the space of bounded linear
operators onH1.
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On the basis of Property (2.20) the map T is usually denoted by TrH2 and called
the partial trace with respect to H2. Later in Proposition 2.4.3 an enhanced
characterization of the partial trace will be offered. Actually this map T is
surjective (in Formula (2.20) take any fixed A2 ∈ B1(H2) with Tr(A2) = 1.)
Proof. Let { f j; j ∈N} be an orthonormal basis of H2. For a given operator A ∈ B1(H1 ⊗H2) define a sesquilinear form QA on H1 by
setting for u,v ∈ H1

QA(u,v) =
∞

∑
j=1
〈u⊗ f j, A(v⊗ f j)〉1⊗2. (2.23)

By inserting the spectral representation (2.5) forH =H1 ⊗H2 we can write this as

QA(u,v) =
∞

∑
j=1

∞

∑
n=1

λn〈u⊗ f j, xn〉1⊗2〈en,v⊗ f j〉1⊗2

For u,v ∈ H1 with ‖u‖ = ‖v‖ = 1 we know that
{

u⊗ f j
}

and
{

v⊗ f j
}

are ONS in H1 ⊗ H2 and thus we can estimate, using first
Schwarz’ inequality and then Bessel’s inequality for these ONS,

|QA(u,v)| ≤∑
n
|λn|∑

j
|〈u⊗ f j, xn〉1⊗2〈en,v⊗ f j〉1⊗2|

≤∑
n
|λn| ‖en‖‖xn‖ = ∑

n
|λn| = ‖A‖1

This implies for general u,v ∈ H1
|QA(u,v)| ≤ ‖A‖1 ‖u‖1 ‖v‖1 ,

and thus the sesquilinear form QA is well defined and continuous. Therefore the representation formula for continuous sesqulinear
forms applies and assures the existence of a unique bounded linear operator T(A) onH1 such that

QA(u,v) = 〈u, T(A)v〉1 for all u,v ∈ H1 (2.24)

and ‖T(A)‖ ≤ ‖A‖1.
In order to show T(A) ∈ B1(H1) we use the characterization of trace class operators as given in Proposition 2.1.5 and estimate

S3(T(A)) by inserting the spectral representation (2.5) for A ∈ B1(H1 ⊗H2) . To this end take any orthonormal sequences {un} and
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{vm} in H1. Since then
{

un ⊗ f j
}

and
{

vm ⊗ f j
}

are orthonormal sequences in H1 ⊗H2 we can estimate as follows, again applying
first Schwarz’ and then Bessel’s inequality:

∑
k
|〈un, T(A)vk〉1| = ∑

k
|∑

n,j
λn〈uk ⊗ f j, xn〉1⊗2〈en,vk ⊗ f j〉1⊗2|

≤∑
n
|λn|∑

k,j
|〈uk ⊗ f j, xn〉1⊗2〈en,vk ⊗ f j〉1⊗2|

≤∑
k
|λn| ‖en‖1⊗2 ‖xn‖1⊗2 = ∑

k
|λn| = ‖A‖1 < ∞.

We conclude T(A) ∈ B1(H1) and
‖T(A)‖1 ≤ ‖A‖1 . (2.25)

The above definition of T(A) is based on the choice of an orthonormal basis
{

f j; j ∈N
}

. However, as in the case of a trace, the value of
T(A) does actually not depend on the basis which is used to calculate it. Suppose that

{
hj; j ∈N

}
is another orthonormal basis of H2.

Express the f j in terms of the new basis, i.e.,
f j = ∑

ν

ujνhν, ujν ∈ C.

Since the transition from one orthonormal basis to another is given by a unitary operator, one knows ∑j ujνujµ = δνµ. Now calculate for
u,v ∈ H1

∑
j
〈u⊗ f j, A(v⊗ f j)〉1⊗2 = ∑

j,ν,µ
ujνujµ〈u⊗ hν, A(v⊗ hµ)〉1⊗2

= ∑
ν,µ

∑
j

ujνujµ〈u⊗ hν, A(v⊗ hµ)〉1⊗2 = ∑
ν

〈u⊗ hν, A(v⊗ hν)〉1⊗2.

Therefore the sesquilinear form QA does not depend on the orthonormal basis which is used to calculate it. We conclude that the
definition of T(A) does not depend on the basis.

Equations (2.23) and (2.24) imply immediately that our map T is linear and thus by (2.25) continuity with respect to the trace norms
follows.

Next we verify the basic properties (2.20), (2.21), and (2.22). For Ai ∈ B1(Hi), i = 1,2 one finds by applying the definitions for all
u,v ∈ H1

〈u, T(A1 ⊗ A2)v〉1 = ∑
j
〈u⊗ f j, (A1 ⊗ A2)(v⊗ f j)〉1⊗2

= ∑
j
〈u, A1v〉1〈 f j, A2 f j〉2 = 〈u, A1v〉1TrH2(A2),
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hence T(A1 ⊗ A2) = A1TrH2(A2), i.e., (2.20) holds.
For A ∈ B1(H1 ⊗H2) we calculate, using an orthonormal basis {ei; i ∈N} ofH1

TrH1(T(A)) = ∑
i
〈ei, T(A)ei〉1 = ∑

i
∑

j
〈ei ⊗ f j, Aei ⊗ f j〉1⊗2 = TrH1⊗H2(A)

and find that (2.21) holds.
Finally take any bounded linear operator A1 onH1, any A ∈ B1(H1 ⊗H2), and any vectors u,v ∈ H1. Our definition gives

〈u, T((A1 ⊗ I2)A)v〉1 = ∑
j
〈u⊗ f j, (A1 ⊗ I2)A(v⊗ f j)〉1⊗2

= ∑
j
〈A∗1u⊗ f j, A(v⊗ f j)〉1⊗2 = 〈A∗1u, T(A)v〉1 = 〈u, A1T(A)v〉1,

and thus T((A1 ⊗ I2)A) = A1T(A), i.e., (2.22) is established. 2

Corollary 2.4.2 For all bounded linear operators A1 onH1 and all A∈B1(H1⊗H2)
one has

TrH1⊗H2((A1⊗ I2)A) = TrH1(A1TrH2(A)). (2.26)

Proof. Apply first (2.21) and then (2.22) and observe that the product of a trace class operator with a bounded linear operator is again
a trace class operator (see Theorem 2.1.6). 2

Proposition 2.4.3 (partial trace characterization) Suppose thatH1 andH2 are two
separable Hilbert spaces and that a linear map L : B1(H1⊗H2)−→B1(H1) satisfies

TrH1(PL(A)) = TrH1⊗H2(P⊗ I2A) (2.27)
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for all finite rank orthogonal projectors P on H1 and all A ∈ B1(H1 ⊗H2). Then L
is the partial trace with respect toH2:

L(A) = TrH2(A). (2.28)
Proof. By taking linear combinations of (2.27) of finite rank projectors Pj we conclude that

TrH1(BL(A)) = TrH1⊗H2((B⊗ I2)A)

holds for all B ∈ B f (H1) and all A ∈ B1(H1 ⊗H2). Hence by Equation 2.26 we find

TrH1(BL(A)) = TrH1(BTrH2(A))

or, observing Corollary 2.2.1 and taking the definition of the inner product on B2(H) in (2.3) into account,

〈B, L(A)〉2 = 〈B,TrH2(A)〉2
all B ∈ B f (H1) and all A ∈ B1(H1 ⊗H1). Since B f (H1) is dense in B2(H1) we conclude. 2

2.4.2 Schmidt decomposition

The elements ofH=H1⊗H2 can be described explicitly in terms of orthonor-
mal bases ofHi: Suppose ej, j ∈N is an orthonormal basis ofH1 and f j, j ∈N

is an orthonormal basis of H2. Then every element x ∈ H is of the form (see
for instance 4)

x =
∞

∑
i,j=1

ci,jei ⊗ f j, ci,j ∈ C,
∞

∑
i,j=1
|ci,j|2 = ‖x‖2 . (2.29)
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However in the discussion of entanglement in quantum physics and quan-
tum information theory it has become the standard to use the Schmidt repre-
sentation of vectors in H which reduces the double sum in (2.29) to a simple
bi-orthogonal sum.

Theorem 2.4.4 (Schmidt decomposition) For every x ∈ H = H1 ⊗H2 there are
nonnegative numbers pn and orthonormal bases gn;n ∈N, of H1 and hn, n ∈N, of
H2 such that

x =
∞

∑
n=1

pngn ⊗ hn,
∞

∑
n=1

p2
n = ‖x‖2 . (2.30)

Proof. We use the standard isomorphism I between the Hilbert tensor productH1⊗H2 and the space LHS(H1;H2) of Hilbert-Schmidt
operatorsH1 −→H2. In the notation of physicists I is given by I(x) = ∑∞

i,j=1 ci,j| f j〉〈ei|, i.e., for all y ∈ H1 we have

I(x)(y) =
∞

∑
i,j=1

ci,j〈ei,y〉1 f j

where 〈·, ·〉1 denotes the inner product of H1 and where x is given by (2.29). It is easily seen that I(x) is a well defined bounded linear
operatorH1 −→H2. Hence I(x)∗ I(x) is a bounded linear operatorH1 −→H1 which is of trace class since

TrH1(I(x)
∗I(x)) =

∞

∑
i=1
〈I(x)ei, I(x)ei〉2 =

∞

∑
i,j=1
|ci,j|2 = ‖x‖2 .

Thus I(x) is a Hilbert Schmidt operator with norm

‖I(x)‖2 = +
√

TrH1(I(x)
∗I(x)) = ‖x‖ . (2.31)
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Since I(x)∗ I(x) is a positive trace class operator onH1, it is of the form

I(x)∗ I(x) =
∞

∑
n=1

λnPgn ,
∞

∑
n=1

λn = ‖x‖2 , (2.32)

where Pgn = |gn〉〈gn| is the orthogonal projector onto the subspace spanned by the element gn of an orthonormal basis gn, n ∈N, of
H1.

This spectral representation allows easily to calculate the square root of the operator I(x)∗ I(x):

|I(x)| def
= +

√
I(x)∗ I(x)) =

∞

∑
n=1

√
λnPgn . (2.33)

This prepares for the polar decomposition (see for instance 4) of the operator I(x) :H1 −→H2, according to which this operator can be
written as

I(x) = U|I(x)|, U = partial isometryH1 −→H2, (2.34)

i.e., U is an isometry from (ker I(x))⊥ ⊂H1 onto ranI(x) ⊂H2.
Finally denote by hn,n ∈N, the orthonormal system obtained from the basis gn, n ∈N, under this partial isometry, hn = Ugn.

Hence, from (2.33) and (2.34) we get

I(x) =
∞

∑
n=1

√
λn |hn〉〈gn|.

If we identify pn with
√

λn and if we apply I−1 to this identity, then Equation (2.30) follows. 2

2.5 Some applications in Quantum Mechanics

Remark 2.5.1 In the case of concrete Hilbert spaces the trace can often be evaluated
explicitly without much effort, usually easier than for instance the operator norm.
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Consider the Hilbert–Schmidt integral operator K in L2(Rn) discussed earlier. It is
defined in terms of a kernel k ∈ L2(Rn ×Rn) by

Kψ(x) =
∫

Rn
k(x,y)ψ(y)Dy ∀ψ ∈ L2(Rn).

In the Exercises we show that

Tr(K∗K) =
∫

Rn

∫
Rn

k(x,y)k(x,y)DxDy.

A special class of trace class operators is of great importance for quantum me-
chanics, which we briefly mention.

Definition 2.5.2 A density matrix or statistical operator W on a separable Hilbert
spaceH is a trace class operator which is symmetric (W∗=W), positive (〈x,Wx〉 ≥ 0
for all x ∈ H), and normalized (TrW = 1).

Note that in a complex Hilbert space symmetry is implied by positivity. In
quantum mechanics density matrices are usually denoted by ρ. Density ma-
trices can be characterized explicitly.

Theorem 2.5.3 A bounded linear operator W on a separable Hilbert space H is a
density matrix if, and only if, there are a sequence of nonnegative numbers ρn ≥ 0
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with ∑∞
n=1 ρn = 1 and an orthonormal basis {en : n ∈N} ofH such that for all x ∈H,

Wx =
∞

∑
n=1

ρn〈en, x〉en, (2.35)

i.e., W = ∑∞
n=1 ρnPen, Pen =projector onto the subspace K en.

Proof. Using the spectral representation (2.1.9) of trace class operators the proof is straight forward and is left as an exercise. 2

The results of this chapter have important applications in quantum mechan-
ics, but also in other areas. We mention, respectively sketch, some of these
applications briefly.

We begin with a reminder of some of the basic principles of quantum me-
chanics (see for instance 14, 12).

1. The states of a quantum mechanical system are described in terms of den-
sity matrices on a separable complex Hilbert spaceH.

2. The observables of the systems are represented by self-adjoint operators
inH.

3. The mean value or expectation value of an observable a in a state z is equal to
the expectation value E(A,W) of the corresponding operators in H; if the



72 CHAPTER 2. HILBERT-SCHMIDT AND TRACE CLASS OPERATORS

self-adjoint operator A represents the observable a and the density matrix
W represents the state z, this means that

m(a,z) = E(A,W) = Tr(AW).

Naturally, the mean value m(a,z) is considered as the mean value of the
results of a measurement procedure. Here we have to assume that AW
is a trace class operator, reflecting the fact that not all observables can be
measured in all states.

4. Examples of density matrices W are projectors Pe on H, e ∈ H, ‖e‖ = 1,
i.e., Wx = 〈e, x〉e. Such states are called vector states and e the representing
vector. Then clearly E(A, Pe) = 〈e, Ae〉 = Tr(PeA).

5. Convex combinations of states, i.e., ∑n
j=1 λjWj of states Wj are again states

(here λj ≥ 0 for all j and ∑n
j=1 λj = 1). Those states which can not be rep-

resented as nontrivial convex combinations of other states are called ex-
tremal or pure states. Under quite general conditions one can prove: There
are extremal states and the set of all convex combinations of pure states
is dense in the space of all states (Theorem of Krein–Milman, 22, not dis-
cussed here).
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Thus we learn, that and how, projectors and density matrices enter in quantum
mechanics.

Next we discuss a basic application of Stone’s Theorem 5 on groups of uni-
tary operators. As we had argued earlier, the Hilbert space of an elementary
localizable particle in one dimension is the separable Hilbert space L2(R). The
translation of elements f ∈ L2(R) is described by the unitary operators U(a),
a ∈ R: (U(a) f )(x) = fa(x) = f (x− a). It is not difficult to show that this one-
parameter group of unitary operators acts strongly continuous on L2(R): One
shows lima→0‖ fa − f ‖2 = 0. Now Stone’s theorem applies. It says that this
group is generated by a self-adjoint operator P which is defined on the do-
main

D =

{
f ∈ L2(R) : lim

a→0

1
a
( fa − f ) exists in L2(R)

}
by

P f =
1
i

lim
a→0

1
a
( fa − f ) ∀ f ∈ D.

The domain D is known to be D = W1(R) ≡
{

f ∈ L2(R) : f ′ ∈ L2(R)
}

and
clearly P f = −if′ = −i Df

Dx. This operator P represents the momentum of the
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particle which is consistent with the fact that P generates the translations:

U(a) = e−iaP.

As an illustration of the use of trace class operators and the trace functional
we discuss a general form of the Heisenberg uncertainty principle. Given a den-
sity matrix W on a separable Hilbert spaceH, introduce the set

OW = {A ∈ B(H) : A∗AW ∈ B1(H)}
and a functional on OW ×OW,

(A, B) 7→ 〈A, B〉W = Tr(A∗BW).

One shows (see Exercises) that this is a sesquilinear form on OW which is pos-
itive semi-definite (〈A, A〉W ≥ 0), hence the Cauchy–Schwarz inequality ap-
plies, i.e.,

|〈A, B〉W| ≤
√
〈A, A〉W

√
〈B, B〉W ∀A, B ∈OW.

Now consider two self-adjoint operators such that all the operators AAW,
BBW, AW, BW, ABW, BAW are of trace class. Then the following quantities
are well defined:

A = A− 〈A〉W I, B = B− 〈B〉W I
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and then

4W(A) =
√

Tr(AAW) =
√

Tr(A2W)− 〈A〉2W,

4W(B) =
√

Tr(BBW) =
√

Tr(B2W)− 〈B〉2W.

The quantity4W(A) is called the uncertainty of the observable ‘A’ in the state
‘W’. Next calculate the expectation value of the commutator [A, B] = AB− BA.
One finds

Tr([A, B]W) = Tr([A, B]W) = Tr(ABW)− Tr(BAW) = 〈A, B〉W − 〈B, A〉W
and by the above inequality this expectation value is bounded by the product
of the uncertainties:

|Tr([A, B]W)| ≤ |〈A, B〉W + |〈B, A〉W| ≤ 4W(A)4W(B) +4W(B)4W(A).

Usually this estimate of the expectation value of the commutator in terms of
the uncertainties is written as

1
2
|Tr([A, B]W)| ≤ 4W(A)4W(B)

and called the Heisenberg uncertainty relations (for the ‘observables’ A, B).
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Actually in quantum mechanics many observables are represented by un-
bounded self-adjoint operators. Then the above calculations do not apply
directly and thus typically they are not done for a general density matrix as
above but for pure states only. Originally they were formulated by Heisenberg
corresponding to the observables of the position and the momentum, repre-
sented by the self-adjoint operators Q and P with the commutator [Q, P] ⊆ iI
and thus on suitable pure states ψ the famous version

1
2
≤4ψ(Q)4ψ(P)

of these uncertainty relations follows.

2.6 Exercises

1. Using Theorem 2.1.9 determine the form of the adjoint of a trace class op-
erator A onH explicitly.

2. For a Hilbert–Schmidt operator K with kernel k ∈ L2(Rn ×Rn) show that

Tr(K∗K) =
∫

Rn

∫
Rn

k(x,y)k(x,y)DxDy.
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3. Prove that statements e. - g. in the second part of Theorem 2.3.2 are equiv-
alent to the corresponding statements b. - d. .

4. Prove the characterization (2.35) of a density matrix W.

Hints: One can use W∗ = W = |W| =
√

W∗W and the explicit representa-
tion of the adjoint of a trace class operator (see the previous problem).

5. Show: A density matrix W on a Hilbert space H represents a vector state,
i.e., can be written as the projector Pψ onto the subspace generated by a
vector ψ ∈ H if, and only if, W2 = W.

6. Show: If a bounded linear operator A has the representation (2.5), then its
absolute value is given by

|A|x = ∑
n
|λn|〈en, x〉en, x ∈ H.

7. Prove that (2.17) defines a continuous linear functional on B(H), under
the assumptioned stated with this formula.

8. Prove Formula (2.18).
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Chapter 3

Operator algebras and positive mappings

Abstract: In various parts of quantum physics positive mappings play a fun-
damental rôle. These mappings are defined on some involutive algebra (often
of operators on some Hilbert space). By definition a positive mapping sends
positive elements of its domain to positive elements of the target space. Thus
first several characterizations of positive elements in an involutive normed
algebra are given. Two types of positive mappings are considered: Positive
linear functionals which have values in C and completely positive mappings
which have values in some other involutive algebra. For the structural anal-
ysis of positive mappings the concept of a representation of an involutive
algebra is needed. This is introduced and in the case of the involutive al-

79
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gebra B(H) of bounded linear operators on a Hilbert space H the general
form of its representations is determined (Naimark’s theorem). The structure
of positive linear functionals on an involutive algebra with unit is presented
in the Gelfand-Naimark-Segal (GNS)-construction. Positive linear function-
als f on an involutive algebra A with unit I such that f (I) = 1 are called
states. On a weakly closed subalgebra A of B(H) special states are of the
form f (A) = Tr(AW) where W is a density matrix onH. These states are char-
acterized in terms of an additional continuity condition (normality, complete
additivity). and are called normal states. The Stinespring factorization theo-
rem gives the general form of a completely positive map between C∗-algebras.
When this result is combined with Naimark’s theorem of representations of
B(H) it allows to determine the general form of completely positive mappings
on B(H) in more detail.

3.1 Representations of C∗-algebras

In quantum mechanics, in local quantum field theory (Haag), in the func-
tional approach to relativistic quantum field theory (Garding-Wightman), and
in quantum information theory positive functionals and completely positive
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mappings play a fundamental rôle, mainly in connection with the mathemat-
ical description of ‘states’ of quantum systems and their manipulation. In this
chapter we present the most important structural results for positive linear
functionals and completely positive maps, namely the Gelfand-Naimark Segal
representation for positive linear functionals (on C∗-algebras) and the Stine-
spring factorization theorem. The natural mathematical framework for these
results is the theory of abstract C∗-algebras and we formulate these results in
this framework, but in our proofs we consider only the cases of C∗-algebras
of operators on Hilbert spaces. This allows to use some simplification in the
characterization of positive elements in these algebras. For the general case
we refer to the literature.

Definition 3.1.1 Let A be an algebra over the field C. If A admits an involution
∗ which is compatible with the algebraic structure of A, i.e., a mapping a 7→ a∗ such
that for all a,b ∈ A the following holds:

(a∗)∗ = a, (λa)∗ = λa∗, λ ∈ C

(a + b)∗ = a∗ + b∗ (ab)∗ = b∗a∗

A is called an involutive algebra or a ∗-algebra. If A admits a norm ‖·‖ under
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which A is a Banach space such that

‖ab‖ ≤ ‖a‖‖b‖ for all a,b ∈ A
then A is called a Banach algebra. If a Banach algebra A has an involution ∗ for
which the norm satifies ‖a∗‖ = ‖a‖ for all a ∈ A such that A is ∗-algebra then A is
called an involutive Banach algebra or a Banach ∗-algebra.

If in addition the norm of an involutive Banach algebra satisfies the conditon

‖a∗a‖ = ‖aa∗‖ = ‖a‖2 for all a ∈ A
it is called a C∗-algebra.

Often an involutive Banach algebra or a C∗-algebra contains a unit I. Then we
assume that ‖I‖ = 1.

Definition 3.1.2 Suppose that A,B are ∗-algebras. A map π : A −→ B is called a
homomorphism of ∗-algebras or a ∗-homomorphism if, and only if, it respects
the structure of a ∗-algebra, i. e.,

π(αa + βb) = απ(a) + βπ(b), ∀ a,b ∈ A, ∀α, β ∈ C; (3.1)
π(ab) = π(a)π(b), ∀ a,b ∈ A; (3.2)
π(a∗) = π(a)∗,∀ a ∈ A . (3.3)
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Many results about abstract C∗-algebras are obtained by studying properties
of their representations by operators on a Hilbert space where one defines

Definition 3.1.3 Let A be a C∗-algebra. A representation (π,H) of A is a ∗-
homomorphism π of A into the C∗-algebra B(H) of all bounded linear operators on a
Hilbert spaceH.

A representation (π,H) of A is called cyclic if there exists a cyclic vector, i.e., a
vector x ∈ H such that the closed linear subspace [π(A)x] generated by all π(a)x ∈
H equals the representation spaceH:

[π(A)x] =H.

3.1.1 Representations of B(H)

For the C∗-algebra of all bounded linear operators on a Hilbert space the gen-
eral form of its representations can be determined. This result will be used
later in our analysis of completely positive maps.

By Theorem 22.3.4 we know that the set of all compact operators Bc(H) on
a (separable) Hilbert space H is a C∗-algebra (without unit, if H is infinite
dimensional). The following result clarifies the structure of all its representa-
tions.
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Theorem 3.1.4 Every continuous representation (π,Hπ) of the C∗-algebra Bc(H) is
equivalent to the direct sum

⊕
n(πn,Hn) of the identity representation πn, A 7→ A,

A ∈ Bc(H), and the zero representation A 7→ 0, A ∈ Bc(H).
Proof. Let {en} be an orthonormal basis ofH and denote by Pn the orthogonal projector onto the one-dimensional subspace [en] = Cen
spanned by en. By Theorem 22.3.2 we know that for A ∈ Bc(H) the finite rank operators

A
N

∑
n=1

Pn, N ∈N

converge in (operator) norm to A. Since the sequence of projectors ∑M
j=1 Pj, M ∈N is bounded in norm (by 1) it follows that

A = lim
M,N→∞

M

∑
j=1

N

∑
n=1

Pj APn in B(H). (3.4)

Now calculate for x ∈ H
Pj APnx = 〈ej, Aen〉〈en, x〉ej

and define operators Ujn onH by
Ujnx = 〈en, x〉ej.

Then we can write
Pj APn = ajnUjn, ajn = 〈ej, Aen〉. (3.5)

The operators Ujn are partial isometries from [en] to [ej] which satisfy for all j,n,m ∈N

Unn = Pn, U∗jn = Unj, UjnUnm = Ujm (3.6)

As finite rank operator all the operators Pn, Ujn belong to Bc(H). Note also that for any fixed n ∈N the closure of the ranges of all the
operators

{
Ujn : j ∈N

}
isH.

Now let (π,Hπ) be a continuous representation of Bc(H). For every A ∈ Bc(H) it follows

π(A) = lim
M,N→∞

M

∑
j=1

N

∑
n=1

π(Pj)π(A)π(Pn) = lim
M,N→∞

M

∑
j=1

N

∑
n=1

ajnπ(Ujn). (3.7)
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Therefore the knowledge of all the π(Ujn) allows to find the representatives π(A) for all A ∈ Bc(H). Since π is a representation the
relations (3.6) also hold for the representing operators π(Pn) and π(Ujn). For n ∈N define

Mn = ran (ß(Pn)) ⊂Hß.

Since π(Pn)π(Pj) = 0 for n 6= j the closed subspaces Mn of Hπ are pairwise orthogonal for different indices. Relations (3.6) for π(Pn),
π(Ujn) imply furthermore that the operators π(Ujn) are partial isometries with initial domain Mn and terminal domain Mj. Hence all
the subspaces {Mn} have the same dimension.

If π(Pn) = 0 for all n ∈N, then by (3.7) one has π(A) = 0 for all A ∈ Bc(H) and π is the zero representation. If π is not the zero
representation, there is n ∈N such that π(Pn) 6= 0 and thus Mn 6= {0}. Hence there is a unit vector fn ∈ Mn and we can define an
orthonormal system

{
f j
}

inHπ by setting
f j = π(Ujn) fn, for all j ∈N.

This orthonormal system generates a closed linear subspace Mπ ⊂Hπ :

Mπ = [
{

f j
}
].

We now show that this subspace is invariant under all π(A), A ∈ Bc(H): Observe first that

π(Ujm) fk = π(Ujm)π(Ukn) fn = 0 for m 6= k

π(Ujm) fm = π(Ujm)π(Umn) fn = π(Ujn) fn = f j

holds. Because of (3.5) this implies

π(Pj)π(A)π(Pm) fk = 0 for m 6= k (3.8)

π(Pj)π(A)π(Pm) fm = ajm f j. (3.9)

Thus all the operators π(Pj)π(A)π(Pm) are reduced by the subspace Mπ ; now (3.7) implies that all operators π(A), A ∈ Bc(H), are
reduced by this subspace too.

In the subspace Mπ the operator π(Pj) is the projection onto the subspace C f j, j ∈N, hence by (3.9) the matrix

[ajm] = [〈ej, Aem〉] = [〈 f j,π(A) fm〉Mπ ] (3.10)

is the matrix of π(A) with respect to the orthonormal basis
{

f j
}

of Mπ .
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Next define an isometric mapping V ofH onto Mπ by setting

Vej = f j, j ∈N

and extend it by linearity and continuity to all ofH. Relation (3.10) implies

V∗π(A)V = A for all A ∈ Bc(H)

and thus the representation π is unitarily equivalent to the identity representation.
If Mπ = Hπ , we are done. Otherwise look at the orthogonal complement M⊥π of Mπ in Hπ . Certainly, M⊥π is invariant under all

π(A), A ∈ Bc(H). For all x ∈ Mπ and all y ∈ M⊥π we have

〈x,π(A)y〉Hπ
= 〈π(A∗)x,y〉Hπ

= 0

since π(A∗)x ∈ Mπ . Thus the restriction of π(A) to M⊥π defines a representation of Bc(H) in M⊥π and we can proceed as above to find
an invariant subspace M′π of M⊥π on which this representation is unitarily equivalent to the identity representation. Now by iteration
of this argument we conclude. 2

Theorem 3.1.5 (Naimark) Every representation (π,Hπ) of the C∗-algebra B(H) of
all bounded operators on a separable Hilbert space H is the direct sum of identity
representations A 7→ A and a representation of the quotient algebra B(H)/Bc(H).

If the representation of this quotient algebra is not the zero representation, then it
is an isomorphism of B(H)/Bc(H) into the algebra of bounded linear operators on a
Hilbert space.
Proof. Since B(H) is a C∗-algebra with unit Theorem 3.2.3 implies that every representation of it is continuous. Therefore a represen-
tation (π,Hπ) of B(H) is at the same time a continuous representation of Bc(H) ⊂ B(H). Thus Theorem 3.1.4 applies. Hence modulo
a unitary map the representation space Hπ is the direct sum

⊕
nHn of copies Hn =H of H and a space H0. In each of the spaces Hn

the representation π is the identity representation of Bc(H) while inH0 it is the zero representation. We have to show that for arbitrary
but fixed n the representation π of B(H) also reduces to the identity representation inHn.
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With the orthogonal projector Qn :Hπ −→Hn introduce π(A)n = Qnπ(A)Qn, i.e.,

π(A)nx = Qnπ(A)x for all x ∈ Hn.

Clearly π(A)n is a well defined bounded linear operator onHn. We show π(A)n = A by showing that their matrices coincide, calculated
with respect to an ONB

{
ej
}

ofHn =H. For the projection operator Pj onto Cej we have as earlier for all i, j ∈N,

Pi APj = aijUij

and thus
π(Pi)π(A)π(Pj) = π(Pi APj) = aijUij.

Recall Pj,Uij, Pi APj ∈ Bc(H) and thus we can calculate as follows:

〈ei,π(A)nej〉 = 〈Qnei,π(A)ej〉 = 〈ei,π(A)ej〉 =
〈Piei,π(A)Pjej〉 = 〈ei, Piπ(A)Pjej〉 = aij〈ei,Uijej〉 = aij

and we conclude π(A)n = A.
It follows, for all x ∈ Hn, A, B ∈ B(H),

Qnπ(A)π(B)x = (AB)x, Qnπ(A)Qnπ(B)x = A(Bx),

and therefore Qnπ(A)(π(B)x) = Qnπ(A)Qn(π(B)x). Denote the closed linear hull of the set {π(B)x : x ∈ Hn, B ∈ B(H)} byH′n. Then
the above argument shows that inH′n one has

Qnπ(A) = Qnπ(A)Qn. (3.11)

NaturallyHn ⊂H′n and therefore Qn = 0 onH′n⊥ ⊂Hπ . As earlier one shows thatH′n andH′n⊥ are invariant under all π(A), A∈ B(H),
hence Qnπ(A) = 0 inH′n⊥ and (3.11) holds in all ofHπ .

Now apply the involution to (3.11) and in the result replace A∗ by A. This gives π(A)Qn = Qnπ(A)Qn and thus

Qnπ(A) = π(A)Qn,

i.e., the spaceHn reduces all the operators π(A), A ∈ B(H). In the spaceHn the identity π(A)n = A now takes the form

Ax = Qnπ(A)x = π(A)Qnx = π(A)x, x ∈ Hn

and thus in the spaceHn the representation of all of B(H) reduces to the identity representation. 2
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3.2 On positive elements and positive functionals

An element a of a ∗-algebra A is called positive if, and only if, one of the
following equivalent conditions hold:

a = b∗b for some b ∈ A; (3.12)
a = c2 for some c ∈ Ah = {a ∈ A : a∗ = a} . (3.13)

In the case that A is a C∗-algebra of operators on a Hilbert space H or a sub-
space of such an algebra one has a third characterization of positive elements
a, namely

〈x, ax〉 ≥ 0 for all x ∈ H. (3.14)

In this case the proof of equivalence of these three conditions is straight for-
ward by using the square root lemma (Theorem 21.5.1) and the polar decom-
position of operators (Theorem 21.5.2). In the case of an abstract C∗-algebra
the characterization of positive elements one has to refer to spectral theory for
these algebras (see Theorem 6.1 of 24).

Using the characterization (3.14) of positive elements it follows easily that
the setA+ of all positive elements inA is a closed convex cone, i.e., if a,b ∈A+

and α, β≥ 0 then αa + βb ∈ A+. This cone satisfies A+ ∩ (−A+) = {0}. Hence
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A+ induces an order in the real Banach space Ah of hermitian elements in A.
For a,b ∈ Ah we write a ≥ b if, and only if, a− b ∈ A+.

Definition 3.2.1 A linear map f : A −→ C on a C∗-algebra A is called a positive
functional if its restriction to the cone A+ of positive elements has only nonnegative
values, i.e., if f (a) ≥ 0 for all a ∈ A+.

The following proposition collects the basic facts about positive linear func-
tionals.

Proposition 3.2.2 For a positive linear functional f on a C∗-algebraA with unit one
has:

a) For all a,b ∈ A
f (a∗b) = f (b∗a) (3.15)

| f (a∗b)|2 ≤ f (a∗a) f (b∗b) (3.16)

b) f is continuous and ‖ f ‖ = f (I).
Proof. For the proof of the first part of a) take arbitrary a,b ∈ A and apply f to the two polarization identities

4a∗b =
3

∑
j=0

ij(b + ija)∗(b + ija), 4ba∗ =
3

∑
j=0

ij(b + ija)(b + ija)∗
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and compare the results. For the proof of the estimate take arbitrary a,b ∈ A and arbitrary α, β ∈ C and observe

0≤ f ((αa + βb)∗(αa + βb))

= |α|2 f (a∗a) + αβ f (a∗b) + αβ f (b∗a) + |β|2 f (b∗b),

thus, because of the first part, the quadratic form on C

|α|2 f (a∗a) + 2Re(fffif(a∗b)) + |fi|2f(b∗b)

is nonnegative, hence its coefficients have to satisfy (3.16).
For the proof of b) observe for all a ∈ A and all x ∈ H

〈x, a∗ax〉 = ‖ax‖2 ≤ ‖a‖2 ‖x‖2 ,

thus
a∗a ≤ ‖a‖2 I, (3.17)

and hence for a positive functional f it follows f (a∗a)≤ ‖a‖2 f (I). The Cauchy Schwarz inequality (3.16) implies | f (a)|2 ≤ f (I∗ I) f (a∗a)
and we find for all a ∈ A

| f (a)| ≤ f (I)‖a‖
and this proves that f is continuous and that ‖ f ‖= sup{| f (a)|; a ∈ A,‖a‖ ≤ 1} ≤ f (I). But clearly f (I)≤ ‖ f ‖ and therefore ‖ f ‖= f (I).
2

Here are some simple examples of positive functionals on a C∗-algebra A
of operators on a Hilbert spaceH:

For x ∈ H define a function fx :A→ C by

fx(a) = 〈x, ax〉 for all a ∈ A. (3.18)

Clearly, by condition (3.14) this functional is positive when restricted to A+ .
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Theorem 3.2.3 Every representation (π,H) of a C∗-algebra A with unit I is contin-
uous and for all a ∈ A

‖π(a)‖ ≤ ‖a‖ .
Proof. Given a representation (π,H) of A, take x ∈ H and define a functional fx :A −→ C by

fx(a) = 〈x,π(a)x〉 for all a ∈ A.

Since π is a ∗-homomorphism, fx is a positive functional on A: For all a ∈ A one has

fx(a∗a) = ‖π(a)x‖2 ≥ 0.

By Proposition 3.2.2 the norm of this functional is ‖ fx‖ = fx(I) = ‖x‖2. It follows

‖π(a)x‖2 = fx(a∗a) ≤ ‖ fx‖‖a∗a‖ = ‖x‖2 ‖a‖2

and thus ‖π(a)x‖ ≤ ‖x‖‖a‖, hence ‖π(a)‖ = sup{‖π(a)x‖ : x ∈ H,‖x‖ ≤ 1} ≤ ‖a‖. 2

3.2.1 The GNS-construction

In this section we provide the answer to the question What is the general form of
positive functionals on a C∗-algebra with unit?

The answer is well known since many years and is given by the GNS-
construction (Gelfand-Naimark-Segal) which we explain now. This construc-
tion can be done in a much more general setting.
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Theorem 3.2.4 (GNS-construction for A)) Let f be a positive functional on a C∗-
algebra A with unit I with f (I) = 1. Then there is a Hilbert space H f , a unit vector
Ω f ∈ H f , and a mapping π f on A with values in the space B(H f ) of bounded linear
operators onH f with the following properties:

1. π f :A −→ B(H f ) is linear;

2. π f (ab) = π f (a)π f (b) for all a,b ∈ A;

3. π f (a∗) = π f (a)∗ for all a ∈ A;

such that
f (a) = 〈Ω f ,π f (a)Ω f 〉 for all a ∈ A (3.19)

where 〈·, ·〉 denotes the scalar product ofH f .
In addition one has [π f (A)Ω f ] =H f , i.e., Ω f is cyclic so that π f is a cyclic repre-

sentation of A.
The triple (H f ,Ω f ,π f ) is unique up to unitary equivalence, i.e., if we also have

f (a) = 〈Ω,π(a)Ω〉 for all a ∈ A where the triple (H,Ω,π) has the properties spec-
ified above for (H f ,Ω f ,π f ) then there is a unitary operator U : H f →H such that
Ω = UΩ f and π(a) = Uπ f (a)U∗ for all a ∈ A.
Proof. Construction ofH f : Define

I f = {a ∈ A : f (a∗a) = 0} .
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By Proposition 3.2.2 the given functional f is continuous onA; since a−→ a∗a is continuous onA, I f is a closed subset. If a,b ∈ I f then,

f ((a + b)∗(a + b)) = f (a∗a) + 2Re(f(a∗b)) + f(b∗b) = 2Re(f(a∗b)) = 0

since by (3.16) 2Re(f(a∗b))≤ f(a∗a)f(b∗b), hence a+ b ∈ I f . Similarly, for a ∈A and b ∈ I f the Cauchy-Schwarz inequality (3.16) implies
that

f ((ab)∗(ab)) = f (b∗a∗ab)) ≤ f (b∗b)1/2 f ((a∗ab)∗(a∗ab))1/2 = 0,

hence ab ∈ I f . Since I f is obviously invariant under multiplication with scalars we conclude that I f is a closed left ideal in A.

A · I f ⊆ I f . (3.20)

Form the quotient spaceH0
f of A with respect to I f , i.e., the space of all equivalence classes

[a] f = a + I f , a ∈ A; (3.21)

H0
f =A/I f =

{
[a] f : a ∈ A

}
. (3.22)

OnH0
f define addition and scalar multiplication of equivalence classes through their representatives, i.e.,

[a] f + [b] f = [a + b] f , λ[a] f = [λa] f , ∀ λ ∈ C, a,b ∈ A.

ThusH0
f becomes a complex vector space.

Next one shows that the formula
〈[a] f , [b] f 〉 = f (a∗b), [a] f , [b] f ∈ H0

f (3.23)

defines a scalar product on the vector space H0
f . Finally define H f as the completion of H0

f with respect to the norm defined by this
scalar product and extend the scalar product (3.23) by continuity toH f . ThusH f is a complex Hilbert space.

Construction of Ω f and π f : First define
Ω f = [I] f . (3.24)

Clearly Ω f ∈ H f satisfies 〈Ω f ,Ω f 〉 = f (I∗ I) = f (I) = 1. Hence this is a unit vector.
Next define

π0
f (a)[b] f = [ab] f , ∀ a,b ∈ A. (3.25)
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Because of property (3.20), π0
f is well defined. And it follows easily that π0

f (a) is a linear operator onH0
f for all a ∈ A. In order to prove

boundedness of the linear operator π0
f (a) we estimate as follows. For all b ∈ A one has, using (3.17),

∥∥∥π0
f (a)[b] f

∥∥∥2

f
= 〈[ab] f , [ab] f 〉 = f ((ab)∗ab) = f (b∗a∗ab)

≤ f (b∗ ‖a‖2 Ib) = ‖a‖2 f (b∗b) = ‖a‖2 〈[b] f , [b] f 〉 f ,

hence π0
f (A) is bounded and

∥∥∥π0
f (a)

∥∥∥ ≤ ‖a‖.
Thus by continuity and density of H0

f , π0
f extends uniquely to a mapping π f : A −→ B(H f ). It is straight forward to see that this

mapping is linear. This proves property 1.
Since the product in A is associative, property 2. of π f follows easily from its definition:

π f (ab)[c] f = [(ab)c] f = [a(bc)] f = π f (a)[bc] f =

π f (a)(π f (b)[c] f ) = (π f (a)π f (b))[c] f , ∀ a,b, c ∈ A.

In order to establish property 3. we calculate as follows, for arbitrary a,b, c ∈ A:

〈π f (a)∗[b] f , [c] f 〉 = 〈[b] f ,π f (a)[c] f 〉 = 〈[b] f , [ac] f 〉 = f (b∗ac)

= f ((a∗b)∗c) = 〈[a∗b] f , [c] f 〉 = 〈π f (a∗)[b] f , [c] f 〉,

hence π f (a∗) = π f (a)∗ for all a ∈ A.
Finally note that our construction gives for all a ∈ A

〈Ω f ,π f (a)Ω f 〉 = 〈[I] f ,π f (a)[I] f 〉 = f (I∗aI) = f (a),

therefore the representation formula (3.19) holds.

Uniqueness up to unitary equivalence: Suppose that we also have f represented as f (a) = 〈Ω,π(a)Ω〉. Define a linear mapping
U :H f −→H by

U0[a] f = π(A)Ω, ∀ a ∈ A.

It follows that U0 is linear and satisfies, for all a,b ∈ A

〈U0[a] f ,U0[b] f 〉 = 〈π(a)Ω,π(b)Ω〉 = 〈Ω,π(a∗b)Ω〉 = f (a∗b) = 〈[a] f , [b] f 〉 .
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We conclude that U0 is an isometry defined on the dense subspace H0
f with dense range π(A)Ω, hence it extends continuously to a

unique unitary operator U :H f −→H. Next calculate

π(a)π(b)Ω = π(ab)Ω = U[ab] f = Uπ f (a)[b] f =

= Uπ f (a)U∗U[b] f = Uπ f (a)U∗π(b)Ω

for all a,b ∈ A. Since π(A)Ω is dense inH we conclude π(a) = Uπ f (a)U∗ for all a ∈ A. 2

3.3 Normal States

In the last section we considered positive linear functionals f on a C∗-algebra
Awith unit I satisfying f (I) = 1. Such functionals are called states ofA. Here
under an addtional continuity asssumption we determine the general form of
states in the case where A is a weakly closed subalgebra of B(H) (see Section
2.3), i.e., if A is a von Neumann algebra.

By Propositon 3.2.2 states are continuous for the (operator) norm when A is
a C∗-algebra. Note that states generate the cone of positive linear functionals.

Simple examples of states are vector states µx, x ∈ H, ‖x‖ = 1, defined by

µx(A) = 〈x, Ax〉 A ∈ A. (3.26)

Another class of examples is obtained as follows. In Formula 2.18 choose gn =
en with {en} ∈ `2(H) and ∑n ‖en‖2 = 1. Then the operator T̂ = ∑n[en, en] is a
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positive trace class operator with Tr(T̂) = ∑n ‖en‖2 = 1 and the formula

T(A) = Tr(T̂A) = ∑
n
〈en, Aen〉 (3.27)

defines a state on B(H).
It turns out that under the conditions we are considering every state on A

will be of this form. This result is used quite often in quantum physics and
naturally in the theory of operator algebras.

Definition 3.3.1 A positive linear functional µ on a von Neumann algebra A ⊆
B(H) is called

1. normal if for every bounded increasing net {Ai : i ∈ I}⊂Ah = {A ∈ A : A∗ = A}
one has

µ(sup
I

Ai) = sup
I

µ(Ai). (3.28)

2. completely additive if for every orthogonal family of projections pi in A one
has

µ(∑
i∈I

pi) = ∑
i∈I

µ(pi). (3.29)
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Note that a family of projections is called orthogonal if any two different pro-
jections are orthogonal, i.e., pi pj = 0 for i 6= j. In this context it is important to
be aware of the following simple result.

Proposition 3.3.2 (Theorem of Vigier) If {Ai : i ∈ I} ⊂ B(H) is a bounded in-
creasing net of self-adjoint operators then there is a self-adjoint operator A = supI Ai

such that
A = lim

I
Ai

in the strong topology on B(H).
Proof. Every x ∈ H defines an increasing net 〈x, Aix〉 in R which is bounded by C‖x‖2 if C denotes the bound for the given net
(‖Ai‖ ≤ C for all i ∈ I), hence the net converges. The polarization identity (Proposition 14.1.2) implies that the net 〈y, Aix〉 converges
for any fixed x,y ∈ H; denote the limit by B(y, x). It follows that B(y, x) is a symmetric sesquilinear form on H bounded by C‖y‖‖x‖.
Such forms define a unique self-adjoint operator A ∈ B(H) by B(y, x) = 〈y, Ax〉 for all x,y ∈ H. By construction 〈y, Ax〉 = limI〈y, Aix〉,
hence A = limI Ai for the weak topology on B(H). Furthermore, for every x ∈ H,

〈x, Ax〉 = lim
I
〈x, Aix〉 = sup

I
〈x, Aix〉,

hence A = supI Ai.
Since the net is bounded it follows that A = limI Ai for the strong topology on B(H): For every x ∈ H we can estimate Ax− Aix,

using A− Ai ≥ 0,

‖(A− Ai)x‖2 =
∥∥∥(A− Ai)

1/2(A− Ai)
1/2x

∥∥∥2
≤
∥∥∥(A− Ai)

1/2
∥∥∥2 ∥∥∥(A− Ai)

1/2x
∥∥∥2

= ‖A− Ai‖〈x, (A− Ai)x〉 ≤ 2C〈x, (A− Ai)x〉;

thus weak convergence of the net implies strong convergence. 2
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Note that in our context this result implies that supI Ai ∈ A so that (3.28) is
meaningful. The main result of this section is

Theorem 3.3.3 (characterization of normal states) For a state µ on a von Neu-
mann algebra A ⊆ B(H) the following statements are equivalent:

a) µ is normal;

b) µ is completely additive;

c) µ is of the form
µ(A) = Tr(AW), A ∈ A (3.30)

with a positive trace class operator W with Tr(W) = 1.

Proof. For the proof we proceed in the order of the implications a)⇒ b)⇒ c)⇒ a).
a)⇒ b): Let {pi : i ∈ I} be any orthogonal family of projections in A. For finite parts J of the index set I introduce the projection

pJ = ∑i∈J pi. Then
{

pJ : J ⊂ I, J finite
}

is a monotone increasing net which is bounded by id. Thus by Proposition 3.3.2

lim
J

pJ = ∑
i∈I

pi.

Since µ is assumed to be normal it follows

µ(∑
i∈I

pi) = lim
J

µ(pJ) = lim
J

∑
i∈J

µ(pi) = ∑
i∈I

µ(pi),

hence µ is completely additive.
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b)⇒ c): This is the core of the proof. The main technical part of the argument is formulated in the following Proposition 3.3.4. This
proposition states that a completely additive state µ on A is strongly continuous when restricted to the unit ball A1 of A. Then the
second part of Theorem 2.3.2 implies that µ is of the form

µ(A) = ∑
n
〈gn, Aen〉, A ∈ A

with {gn} ,{en} ∈ `2(H) where we used (2.18). As in the introductory example the form (3.30) of µ follows.
c)⇒ a): Again according to the second part of Theorem 2.3.2 µ is σ-weakly continuous if c) is assumed. On bounded sets the weak

and σ-weak topology agree according to Lemma 2.3.1. Thus by Proposition 3.3.2 we conclude. 2

Proposition 3.3.4 Every completely additive state µ on a von Neumann algebraA⊆
B(H) is strongly continous when restricted to the unit ball A1 of A.
Proof. For the proof we have to find suitable seminorms for the strong topology by which we can estimate the given state. This could
be achieved by finding suitable vector states which dominate µ. This idea can be realised first on certain parts of A and then on all of
A.

Claim 1: There are a nonzero projection p ∈ A and a vector x ∈ H such that

µ ≤ µx on pAp.

For the proof of this claim choose x∈H, ‖x‖= 1. Then we have µx(I) = 〈x, Ix〉= 1= µ(I). IntroduceP0 = {p ∈ A : p = projection, ¯x(p) < ¯(p)}.
If P0 is empty, then µ(p) ≤ µx(p) for all projections p in A and we are done.

If P0 is not empty consider the collection P of all subsets

P = {pi ∈ P0 : pi mutually orthogonal} ⊂ P0.

By set inclusion P is a partially ordered set in which every chain has an upper bound (the union of the elements of this chain). Hence
by Zorn’s lemma P has a maximal element P. Then p = ∑pi∈P pi ≤ I and thus, since µ is completely additive,

µx(p) = ∑
pi∈P

µx(pi) < ∑
pi∈P

µ(pi) = µ( ∑
pi∈P

pi) = µ(p) ≤ µ(I) = µx(I),

hence p < I and therefore q = I − p 6= 0. Since every projection q′ ∈ qAq is orthogonal to each pi ∈ P, by maximality of P we know
q′ /∈ P0, and thus for all projections q′ ∈ qAq it follows µ(q′) ≤ µx(q′).
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According to the spectral theorem (Theorem ??)1 every positive A ∈ qAq is the norm limit of linear combinations ∑n
j=1 λjqj of

projections qj ∈ qAq with positive coefficients λj. The above estimate implies

µ(
n

∑
j=1

λjqj) =
n

∑
j=1

λjµ(qj) ≤
n

∑
j=1

λjµx(qj) = µx(
n

∑
j=1

λjqj).

Since µ and µx are continuous with respect to the norm topology we get in the limit

µ(A) ≤ µx(A), A ∈ qAq, A ≥ 0

and claim 1 follows.
Claim 2: There is a family {pi} of mutually orthogonal projections in A and of points xi ∈ H such that

µ ≤ µxi on piApi and ∑
i

pi = I. (3.31)

The proof of this claim relies again on Zorn’s lemma. According to the first claim we know that the set

S0 = {(p, x) : p projection inA, x ∈ H,µ ≤ µx on pAp}

is not empty. Then consider the collection S of subsets

S = {(pi, xi) ∈ S0 : {pi} mutually orthogonal} .

S is partially ordered by set inclusion and then every chain in S has an upper bound. Zorn’s lemma implies that S has a maximal
element Sm. Define p as the sum of all projections pi for which (pi, xi) ∈ Sm: p = ∑i pi. If p < I then q = I − p is a nontrivial projection.
Apply the statement of the first claim to qAq ⊆ B(qH). Hence there is y ∈ qH and a projection p0 ∈ qAq such that µ ≤ µy on p0qAqp0.
By construction p0 is mutually orthogonal to all projections pi with (pi, xi) ∈ Sm. This contradicts the maximality of Sm and therefore
we get p = ∑i pi = I and (3.31) follows.

Claim 3: Given ε > 0 there is a neighborhood of zero U for the strong topology such that |µ(A)| ≤ ε for all A ∈U ∩A1.
The proof of this claim follows now easily from (3.31): Since µ is a completely additive state we know

1 = µ(I) = µ(∑
i

pi) = ∑
i

µ(pi);

1Our version of the spectral theorem proves this claim only for the case A = B(H). For the general case of A ⊂ B(H) we have to
refer to Theorem 5.2.2 of 19.
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thus the index set of our maximal family Sm is countable and there is a finite subset J of the index set of our maximal family Sm

such that ∑i∈J µ(pi) ≤ 1− ε2

4 . For q = I −∑i∈J pi this gives µ(q) ≤ ε2

4 . Define U =
{

A ∈ A : ∑i∈J ‖Apixi‖ ≤ ε/2
}

and observe µ(A) =
µ(Aq) + µ(A ∑i∈J pi). For all A ∈ A with ‖A‖ ≤ 1 we estimate as follows:

|µ(Aq)| ≤ µ(A∗A)1/2µ(q∗q)1/2 ≤ µ(q)1/2 ≤ ε/2

and similarly

|µ(A∑
i∈J

pi)| ≤∑
i∈J
|µ(Api)| ≤

n

∑
i∈J

µ(I∗ I)1/2µ((Api)
∗Api)

1/2 = ∑
i∈J

µ(pi A∗Api)
1/2

≤∑
i∈J

µxi (pi A∗Api)
1/2 = ∑

i∈J
‖Apixi‖ .

Putting these estimates together gives our claim 3 for the neighborhood U introduced above. 2

3.4 Completely positive maps

In Section 3.2.1 the general form of positive linear maps

f :A −→ C = M1(C)

has been determined for C∗-algebras. A natural extension of this problem is
to look for the general form of positive linear maps with values in the space
Mk(C) of complex k× k matrices

F :A −→ Mk(C), k > 1,
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or even more general for mappings with values in a C∗-algebra of operators
on a Hilbert spaceH,

F :A −→ B, B ⊂ B(H) (3.32)

extending the representation formula (3.19). This problem was investigated
and solved by Stinespring in 1955 for the general case of C∗-algebras 23. It
was found that one can arrive at a representation formula similar to (3.19) if
one imposes on F a stronger positivity requirement, namely that of complete
positivity.

3.4.1 Positive elements in Mk(A)

Let A be a C∗-algebra. For k = 1,2, . . . introduce the space Mk(A) of k × k
matrices [aij] with entries aij ∈ A, i, j = 1, . . . ,k. In a natural way this space is a
C∗-algebra (with unit if A has a unit) (see 24).

According to our earlier discussion we call an element

a = [aij] =

a11 · · · a1k
... ... ...

ak1 · · · akk

 , aij ∈ A

positive, a ≥ 0 if, and only if, a = c∗c for some c ∈ Mk(A).
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IfA is a C∗-algebra of operators on a Hilbert spaceH then a = [aij] ∈Mk(A)
acts naturally on

Hk =
{

ξ = (ξ1, . . . ,ξk) : ξ j ∈ H, j = 1, . . . ,k
}

(3.33)

according to the rule

([aij]ξ)i =
k

∑
j=1

aijξ j, ξ ∈ Hk . (3.34)

The space (3.33) is a Hilbert space with the scalar product

〈ξ,η〉Hk =
k

∑
j=1
〈ξ j,ηj〉H, ∀ ξ,η ∈ Hk . (3.35)

Positive elements in Mk(A) are characterized by the following lemma (see
24):

Lemma 3.4.1 The following conditions are equivalent for an element a= [aij]∈Mk(A):
(1) a = b∗b for some b ∈ Mk(A);
(2) 〈ξ, aξ〉Hk ≥ 0 for all ξ ∈ Hk;
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(3) a = [aij] is a sum of matrices of the form [a∗i aj], a1, . . . , ak ∈ Mk(A);
(4) For all x1, . . . , xk ∈ A one has

k

∑
i,j=1

x∗i aijxj ≥ 0 inA.

Proof. (1)⇒ (3): If a = b∗b for some b ∈ Mk(A), then aij = (b∗b)ij = ∑k
m=1 b∗mibmj; cm = [b∗mibmj] ∈ Mk(A) is of the claimed form and

a = ∑k
m=1 cm. Thus (3) holds.

(3)⇒ (4): If we know a = [a∗i aj] for some aj ∈ A and if any elements x1, . . . , xk ∈ A are given, then

k

∑
i,j=1

x∗i aijxj =
k

∑
i,j=1

x∗i a∗i ajxj =

(
k

∑
i=1

aixi

)∗( k

∑
i=1

ajxj

)
,

now b = ∑k
i=1 aixi ∈ A and

k

∑
i,j=1

x∗i aijxj = b∗b,

hence this sum is positive.
(4)⇒ (2): If (4) holds, then by condition (3.14), for all x ∈ H and all xi ∈ A,

〈x,

(
k

∑
i,j=1

x∗i aijxj

)
x〉H ≥ 0.

It follows
〈ξ, aξ〉Hk ≥ 0

for all ξ ∈ Hk which are of the form
ξ = (x1x, . . . , xkx), x ∈ H xj ∈ A .

But this set equalsHk, hence (2) holds.
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(2)⇒ (1): If (2) holds, the square root lemma (Theorem 21.5.1) implies that a has a positive square root b =
√

a ∈ Mk(A) such that
a = b2 = b∗b and (1) follows.

Note that (1)⇒ (2) is trivial and also (3)⇒ (1) is simple. If a is of the form [a∗i aj], then

a =

a∗1 a1 · · · a∗1 ak
...

...
...

a∗k a1 · · · a∗k ak

 =

a∗1 0 · · · 0
...

...
...

...
a∗k 0 · · · 0

 ·


a1 · · · ak
0 · · · 0
...

...
...

0 · · · 0

 = b∗b,

hence (1). 2

Elements in Mk(A) which satisfy any of the 4 equivalent conditions of Lemma
3.4.1 are called positive.

Lemma 3.4.2 Let A be a C∗-algebra of operators in a Hilbert space H. Then, given
any a1, . . . , ak ∈ A one has for all a ∈ A

[(aai)
∗(aaj)] ≤ ‖a‖2 [a∗i aj] in Mk(A). (3.36)

Proof. The matrix of operators [(aai)
∗(aaj)] acts on the Hilbert spaceHk according to (3.34) and for all x = (x1, . . . , xk) ∈ Hk we have

〈x, [(aai)
∗(aaj)]x〉Hk =

∥∥∥∥∥∑j
aajxj

∥∥∥∥∥
2

H
≤ ‖a‖2

∥∥∥∥∥∑j
ajxj

∥∥∥∥∥
2

H
= ‖a‖2 〈x, [a∗i aj]x〉Hk ,

thus (3.36) follows. 2
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3.4.2 Some basic properties of positive linear mappings

In the proof of the Stinespring factorization theorem for completely positive
maps we need some basic properties of positive linear maps. These are briefly
discussed here.

LetA and B be ∗-algebras. Recall: Elements a inA are called positive (more
accurately, nonnegative), in symbols a ≥ 0, if there is b ∈ A such that a = b∗b.
A corresponding characterization of positive elements applies to B. Further-
more, a linear mapping T : A −→ B is called positive if, and only if, for all
a ∈ A with a ≥ 0 one has T(a) ≥ 0 (in B).

Knowing what positive elements are, we can define an order on A and B:
For a1, a2 ∈ A one says that a1 is smaller or equal to a2, in symbols a1 ≤ a2, if,
and only if, a2− a1 ≥ 0.

For any positive linear mapping T :A −→ B the following holds:

a1, a2 ∈ A, a1 ≤ a2 ⇒ T(a1) ≤ T(a2) . (3.37)

Positive linear maps T :A −→ B satisfy the following important estimates:
Lemma 3.4.3 Suppose that A is a C*-algebra with unit I. Then any positive linear
map T :A −→ B satisfies

T(x∗a∗ax) ≤ ‖a‖2 T(x∗x) ∀ a, x ∈ A . (3.38)
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In particular
T(a∗a) ≤ ‖a‖2 T(I) ∀ a ∈ A

and thus T(I) = 0 implies T = 0.
Proof. From (3.17) we know for all a ∈ A

a∗a ≤ ‖a‖2 I , (3.39)

hence for all x ∈ A,
x∗a∗ax ≤ ‖a‖2 x∗x ,

and thus for any positive linear mapping T : A −→ B estimate (3.38) follows. If we choose x = I we get the estimate for T(a∗a). This
estimate implies that T vanishes on all positive elements of A if T(I) = 0. Now observe that every a ∈ A can be written as

a =
1
2
(a + a∗) + i

1
2i
(a− a∗)

where the elements ar =
1
2 (a + a∗) and ai =

1
2i (a− a∗) are self-adjoint (Hermitian), i.e., a∗r,i = ar,i. From spectral theory it follows that

every self-adjoint b ∈ A can be written as the difference of two positive elements in A, b = b+ − b− with b± ≥ 0. By linearity of T we
conclude that T vanishes on all of A.
2

3.4.3 Completely positive maps between C∗-algebras

Suppose that a linear map F :A−→B between two C∗-algebras A,B is given.
For k = 1,2, . . . it induces a map

Fk : Mk(A) −→ Mk(B), Fk([aij]) = [F(aij)], . (3.40)

for all aij ∈ A, i, j = 1,2, . . . ,k.
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Definition 3.4.4 A linear map F :A−→B as above is called k-positive if, and only
if, Fk is positive, i.e., if Fk maps positive elements of Mk(A) to positive elements of
Mk(B), If F is k-positive for all k ∈N then F is called completely positive.

Remark 3.4.5 In Physics literature the map Fk is usually written as

Fk = Ik ⊗ F : Mk(C)⊗A −→ Mk(C)⊗B . (3.41)

Naturally, our characterization of positive elements in Mk(A) of the previ-
ous subsection implies a characterization of k-positive and completely positive
maps.

Corollary 3.4.6 Let F :A −→ B be as above. Then F is k-positive if, and only if,

∀xi∈A ∀yj∈B
k

∑
i,j=1

y∗i F(x∗i xj)yj ≥ 0 in B . (3.42)

Proof. By condition (3) of Lemma 3.4.1 every positive element [aij] in Mk(A) is a sum elements of the form [x∗i xj], x1, . . . , xk ∈ A; hence
F is k-positive if, and only if, [F(x∗i xj)] is positive in Mk(B). According to Condition (4) of Lemma 3.4.1, this is the case if, and only if
condition (3.42) holds. Thus we conclude. 2

Corollary 3.4.7 Let F : A −→ B be as above with B = M1(C) = C. If F is positive,
then F is completely positive.
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Proof. If F : A −→ C is positive, then F(b∗b) ≥ 0 for all b ∈ A. Using the characterization (3.42) we show that F is k-positive for all k.
For yj ∈ C the sum in (3.42) can be written as

k

∑
i,j=1

y∗i F(x∗i xj)yj = F

((
k

∑
i=1

yixi

)∗( k

∑
i=1

yixi

))
= F(b∗b).

Thus, by Corollary 3.4.6, F is k-positive and we conclude. 2

Our first example of a completely positive map F : A −→ B: Any homomor-
phism F of C∗-algebras is completely positive.

The proof is simple. Using Corollary 3.4.6 we show that a homomorphism
of ∗-algebras is k-positive for every k ∈N. For all xi ∈ A and all yj ∈ B one
has, using the properties of a homomorphism of ∗-algebras and Lemma 3.4.1,

k

∑
i,j=1

y∗i F(x∗i xj)yj =
k

∑
i,j=1

y∗i F(xi)
∗F(xj)yj =

(
k

∑
i=1

F(xi)yi

)∗( k

∑
j=1

F(xj)yj

)
which is certainly ≥ 0 in B. Hence F is k-positive for every k and therefore
completely positive.

Our next example is just a slight extension of the first. Let π : A −→ B a
∗-homomorphism of A and V some element in B; define F :A −→ B by

F(a) = V∗π(a)V, ∀ a ∈ A . (3.43)
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A similar calculation as above shows that F is a completely positive map. For
all xi ∈ A and all yj ∈ B one has, using the properties of a homomorphism of
∗-algebras and Lemma 3.4.1,

k

∑
i,j=1

y∗i F(x∗i xj)yj =
k

∑
i,j=1

y∗i V∗π(xi)
∗π(xj)Vyj =(

k

∑
i=1

π(xi)Vyi

)∗( k

∑
j=1

π(xj)Vyj

)
≥ 0 in B .

Note that if V is not unitary then the map F of (3.43) is not a representation of
A.

3.4.4 Stinespring factorization theorem for completely positive maps

The Stinespring factorization theorem shows that essentially all completely
positive maps are of the form (3.43). The proof is a straightforward extension
of the proof for the GNS-construction.

We state and prove this result explicitly for the case where A and B are
C∗-algebras of operators on a Hilbert space. The general case is given in 24.
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Theorem 3.4.8 (Stinespring factorization theorem) Let A be a C∗-algebra with
unit I and B ⊂B(H) be a C∗-algebra of operators in a Hilbert spaceH. Then for every
completely positive map f : A −→ B there exist a Hilbert space K f , a representation
π f of A in K f , and a bounded linear operator V :H −→K f such that

f (a) = V∗π f (a)V ∀ a ∈ A . (3.44)

Furthermore, for all ξ ∈ H , ‖Vξ‖ f =
∥∥ f (I)1/2ξ

∥∥
H.

Proof. Construction of K f : On the algebraic tensor product A⊗H define, for elements ζ = ∑k
i=1 ai ⊗ ξi,χ = ∑l

j=1 bj ⊗ ηj in A⊗H,

〈ζ,χ〉 f =
k

∑
i=1

l

∑
j=1
〈ξi, f (a∗i bj)ηj〉H . (3.45)

One verifies that this formula defines a sesquilinear form on A⊗H. In particular, in the notation of Section 4.1,

〈ζ,ζ〉 f =
k

∑
i=1,j
〈ξi, f (a∗i aj)ξ j〉H = 〈ξ, [ f (a∗i aj)]ξ〉Hk = 〈ξ, fk([a∗i aj])ξ〉Hk .

According to Lemma 3.4.1 the element a = [a∗i aj] ∈ Mk(A) is positive and, since f is completely positive, fk is a positive mapping from
Mk(A) into Mk(B), hence fk([a∗i aj]) is a positive matrix on Hk and we conclude 〈ζ,ζ〉 f ≥ 0. Therefore the sesquilinear form (3.45) is
positive semi-definite and hence it satisfies the Cauchy-Schwarz inequality

|〈ζ,χ〉 f |2 ≤ 〈ζ,ζ〉 f 〈χ,χ〉 f .

We conclude that the kernel

I f =

{
ζ =

k

∑
i=1

ai ⊗ ξi ∈ A⊗H : 〈ζ,ζ〉 f = 0

}
of this sesquilinear form is a linear subspace of A⊗H. On the quotient space

K0
f =A⊗H/I f =

{
[ζ] f = ζ + I f : ζ ∈ A⊗H

}
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the formula
〈[ζ] f , [χ] f 〉 = 〈ζ,χ〉 f

then defines an inner product and thus the completion K f of K0
f with respect to the norm defined by this inner product is a Hilbert

space.

Construction of π f : For [ζ] f ∈ K0
f , ζ = ∑k

i=1 ai ⊗ ξi ∈ A⊗H define

π0
f (a)[ζ] f = [

k

∑
i=1

aai ⊗ ξi] f ∀ a ∈ A. (3.46)

At first we calculate

〈π0
f (a)[ζ] f ,π0

f (a)[ζ] f 〉 = 〈[
k

∑
i=1

aai ⊗ ξi] f , [
k

∑
j=1

aaj ⊗ ξ j] f 〉 = 〈
k

∑
i=1

aai ⊗ ξi,

k

∑
j=1

aaj ⊗ ξ j〉 f =
k

∑
i,j=1
〈ξi, f ((aai)

∗(aaj))ξ j〉H = 〈ξ, fk([(aai)
∗(aaj)])ξ〉Hk

where ξ = (ξ1, . . . ,ξk) ∈ Hk. Lemma 3.4.2 says
[a∗i a∗aaj] ≤ ‖a‖2 [a∗i aj].

Since f is completely positive, the map fk is positive and therefore

fk([a∗i a∗aaj]) ≤ ‖a‖2 fk([a∗i aj]).

We conclude
〈ξ, fk([(aai)

∗(aaj)])ξ〉Hk ≤ ‖a‖2 〈ξ, fk([a∗i aj])ξ〉Hk

and hence
〈π0

f (a)[ζ] f ,π0
f (a)[ζ] f 〉 f ≤ ‖a‖2 〈[ζ] f , [ζ] f 〉 f . (3.47)

This estimate shows first that π0
f (a) is well defined (i.e., π0

f (a) is indeed a map between equivalence classes and does not depend on
the representatives of the equivalence classes which are used in its definition).

Now, using (3.46), it is a straightforward calculation to show that π0
f : K0

f −→ K0
f is linear. Then (3.47) implies that this map is

bounded and
∥∥∥π0

f (a)
∥∥∥ ≤ ‖a‖.
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From the definition (3.46) it is immediate that π0
f satisfies

π0
f (ab) = π0

f (a)π0
f (b) ∀ a,b ∈ A .

In order to show
π0

f (a∗) = π0
f (a)∗ ∀ a ∈ A

we calculate as follows: For ζ,χ as in (3.45) and a ∈ A, using (3.46),

〈π0
f (a)∗[ζ] f , [χ] f 〉 = 〈[ζ] f ,π0

f (a)[χ] f 〉 =
k

∑
i=1

l

∑
j=1
〈ξi, f (a∗i abj)ηj〉H =

k

∑
i=1

l

∑
j=1
〈ξi, f ((a∗ai)

∗bj)ηj〉H = 〈[
k

∑
i=1

(a∗ai)⊗ ξi] f , [
l

∑
j=1

bj ⊗ ηj] f 〉

= 〈π0
f (a∗)[ζ] f , [χ] f 〉 .

Since this identity is true for all [ζ] f , [χ] f ∈ K0
f we conclude.

This establishes that π0
f is a representation of A on K0

f .

By continuity π0
f has a unique extension to a representation π f on the completion K f of K0

f .

Construction of V: Define V0 :H −→K0
f by

V0ξ = [I ⊗ ξ] f ∀ ξ ∈ H . (3.48)

An easy calculation shows that V0 is linear. Now calculate

〈V0ξ,V0ξ〉 = 〈In ⊗ ξ, I ⊗ ξ〉 f = 〈ξ, f (I∗ I)ξ〉H ≤ ‖ f (I)‖〈ξ,ξ〉H ∀ ξ ∈ H .

This shows that V0 is bounded. Since f (I∗ I) = f (I) is positive we know f (I) = (
√

f (I))2 and thus∥∥∥V0ξ
∥∥∥ ≤ ∥∥∥∥√ f (I)ξ

∥∥∥∥
H

ξ ∈ H. (3.49)

In the case of f (I) = I, V0 is thus an isometry.
Now for a ∈ A and ξ ∈ H the identity

π0
f (a)V0ξ = [a⊗ ξ] f
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follows. We deduce
π0

f (A)V0H = K0
f . (3.50)

V0 is extended by continuity to a bounded linear operator V :H −→K f and then the last condition reads

[π f (A)VH] = K f , (3.51)

where [· · · ] denotes the closure of the linear hull of · · · in K f .
Now all preparations for the proof of the Stinespring factorization formula have been done. For η,ξ ∈ H one finds for all a ∈ A,

〈V0η,π0
f (a)V0ξ〉 = 〈[I ⊗ η] f , [a⊗ ξ] f 〉 = 〈I ⊗ η, a⊗ ξ〉 f = 〈η, f (I∗a)ξ〉H

and therefore f (a) = (V0)∗π0
f (a)V0 for all a ∈ A. By continuous extension the Stinespring factorization formula (3.44) follows. 2

Corollary 3.4.9 (Uniqueness under minimality condition) Let f : A −→ B be
a completely positive map as in Theorem 3.4.8 and let

f (a) = U∗π(a)U, a ∈ A (3.52)

be a Stinespring factorization of f with a representation π of A in a Hilbert space K
and a bounded linear operator U : H −→ K. If this factorization satisfies the mini-
mality condition

[π(A)UH] = K (3.53)

then, up to a unitary transformation, it is the factorization constructed in Theorem
3.4.8.
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Proof. We begin by defining a linear operator W0 : π f (A)VH −→ π(A)UH by the formula

W0

(
k

∑
i=1

π f (xi)Vξi

)
=

k

∑
i=1

π(xi)Uξi xi ∈ A, ξi ∈ H . (3.54)

Now calculate the inner product of these images in K:

〈W0

k

∑
i=1

π f (xi)Vξi,W0

l

∑
j=1

π f (yi)Vηj〉K = 〈
k

∑
i=1

π(xi)Uξi,
l

∑
j=1

π(yj)Uηj〉K =

k

∑
i=1

l

∑
j=1
〈Uξi,π(xi)

∗π(yj)Uηj〉K =
k

∑
i=1

l

∑
j=1
〈ξi,U∗π(x∗i yj)Uηj〉H =

k

∑
i=1

l

∑
j=1
〈ξi, f (x∗i yj)ηj〉H =

k

∑
i=1

l

∑
j=1
〈ξi,V∗π f (xi)

∗π f (yj)Vηj〉H

= 〈
k

∑
i=1

π f (xi)Vξi,
l

∑
j=1

π f (yi)Vηj〉.

We conclude that W0 : π f (A)VH −→ π(A)UH is isometric and thus extends by continuity to a unitary operator

W : [π f (A)VH] −→ [π(A)UH],

i.e., because of the minimality condition to a unitary operator W : K f −→K. From the above definition the relations

Wπ f (·)W∗ = π(·), WV = U

follow immediately. 2

Corollary 3.4.10 Let f : A −→ B be a completely positive map as above. Then the
inequality

f (a)∗ f (a) ≤ ‖ f (I)‖ f (a∗a) (3.55)
holds for all a ∈ A.
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Proof. By Theorem 3.4.8 f has a Stinespring factorization f (a) = V∗π(a)V and thus

f (a)∗ f (a) = (V∗π(a)V)∗V∗π(a)V = V∗π(a)∗VV∗π(a)V

≤ ‖V‖2 V∗π(a)∗π(a)V = ‖V‖2 f (a∗a) .

The estimate ‖Vξ‖ f ≤
∥∥∥ f (I)1/2ξ

∥∥∥
H

for ξ ∈ H implies ‖V‖ ≤
∥∥∥ f (I)1/2

∥∥∥ or ‖V‖2 ≤
∥∥∥ f (I)1/2

∥∥∥2
= ‖ f (I)‖. 2

3.4.5 Completely positive mappings on B(H)

Theorem 3.1.5 determines the structure of representations of the C∗-algebra
B(H). If we combine this result with Stinespring’s factorization theorem we
arrive at a more concrete form of completely positive mappings on B(H).

Suppose that operators a1, . . . , am ∈ B(H) are given. Define fm : B(H) −→
B(H) by

fm(a) =
m

∑
j=1

a∗j aaj.

Using Corollary 3.4.6 one shows easily that this mapping is completely posi-
tive. Next suppose that we are given a sequence

{
aj
}
⊂ B(H) of operators for

which there is a positive operator B such that for all m ∈N

Sm =
m

∑
j=1

a∗j aj ≤ B. (3.56)
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Thus we get a sequence of completely positive mappings fm on B(H) which
converges.

Lemma 3.4.11 (completely positive maps on B(H)) For a sequence of operators
aj ∈ B(H) which satisfies (3.56) the series

f (a) =
∞

∑
j=1

a∗j aaj, a ∈ B(H) fixed (3.57)

converges in the ultraweak operator topology on B(H) and defines a completely posi-
tive mapping which satisfies

f (I) ≤ B. (3.58)
Proof. Recall that every a ∈ B(H) has a representation as a complex linear combination of four positive elements. Thus it suffices to
show this convergence for positive a ∈ B(H). In this case we know that 0≤ a ≤ ‖a‖ I and it follows for arbitrary x ∈ H and m ∈N

m

∑
j=1

∥∥∥a1/2ajx
∥∥∥2

=
m

∑
j=1
〈x, a∗j aajx〉 ≤

m

∑
j=1
‖a‖〈x, a∗j ajx〉 ≤ ‖a‖〈x, Bx〉,

hence this monotone increasing sequence is bounded from above and thus it converges:

∞

∑
j=1
〈x, a∗j aajx〉 ≤ ‖a‖〈x, Bx〉.

The polarization identity (14.5) implies that for arbitrary x,y ∈ H the numerical series

∞

∑
j=1
〈x, a∗j aajy〉
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converges. This shows that the series (3.57) converges in the weak operator topology and thus defines f (a) ∈ B(H). Since the partial
sums of the series considered are bounded we also have ultraweak convergence by Lemma 2.3.1 (on bounded sets both topologies
coincide).

Finally we show that f is completely positive by showing that it is k-positive for every k ∈N. According to Corollary 3.4.6 choose
arbitrary A1, . . . , Ak, B1, . . . , Bk ∈ B(H). For every x ∈ H we find

〈x,
k

∑
i,j=1

B∗i f (A∗i Aj)Bjx〉 = lim
m→∞

〈x,
k

∑
i,j=1

B∗i fm(A∗i Aj)Bjx〉 ≥ 0

since fm is k-positive. We conclude that ∑k
i,j=1 B∗i f (A∗i Aj)Bj ≥ 0 in B(H) and hence f is k-positive. 2

Combining Stinespring’s factorization theorem with Theorem 3.1.5 shows that
essentially all completely positive mappings on B(H) are of the form (3.57).

Theorem 3.4.12 Every completely positive mapping f : B(H) −→ B(H) is of the
form

f (a) = V∗0 π0(a)V0 + ∑
j∈J

a∗j aaj, a ∈ B(H) (3.59)

with the following specifications:
π0 is a representation of the quotient algebraB(H)/Bc(H) on a Hilbert space H0

(hence π0(b) = 0 for all b ∈ Bc(H)), V0 is a bounded linear operator H −→H0, J is
a finite or countable index set, and aj ∈ B(H) satisfy

∑
j∈J

a∗j aj ≤ f (I). (3.60)
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Proof. Theorem 3.4.8 implies that a given completely positive mapping on B(H) is of the form (3.44) with a representation π of B(H)
on a Hilbert space K and a bounded linear operator V :H −→K, i. e.,

f (a) = V∗π(a)V, a ∈ B(H).

The general form of representations of B(H) has been determined in Theorem 3.1.5. According to this result π has the direct sum
decomposition (J some finite or countable index set)

π = π0 ⊕
⊕
j∈J

πj

where for j ∈ J πj is the identity representation πj(a) = a in the Hilbert space Hj =H and where π0 is a representation of the quotient
algebra B(H)/Bc(H). This means that there is a unitary operator U from the representation space K of π onto the direct sum of the
Hilbert spaces of these representations

H0 ⊕
⊕
j∈J
Hj.

Denote the projectors of UK ontoH0 by P0, respectively ontoHj by Pj, j ∈ J. Thus f (a) = V∗π(a)V takes the form

f (a) = V∗0 π0(a)V0 + ∑
j∈J

a∗j aaj, a ∈ B(H)

where V0 = P0UV and aj = PjUV for j ∈ J. Since π0(I) ≥ 0 one has the bound (3.60). 2
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Chapter 4

Positive mappings in quantum physics

Abstract: This chapter offers some results which will help to understand some
foundational aspects of quantum mechanics. It relies on some results pre-
sented in the last chapter. The first section discusses the general form of σ-
additive probability measures on the complete lattice of orthogonal projec-
tions on a Hilbert space (Gleason’s theorem) and its variations. In quantum
mechanics and in quantum information theory quantum channels or quantum
operations are defined mathematically as completely positive maps between
density operators which do not increase the trace (see for instance 18). Thus
in the next section we determine the general form of quantum operations on
a separable Hilbert space, i.e., we prove Kraus’ first representation theorem
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for operations. Usually quantum information theory studies systems of some
finite dimension n and then density operators are just positive n× n matrices
with complex coefficients which have trace 1. In this context the relevant C∗-
algebra is just the space Mn(C) of all n× n matrices with complex entries, for
some n ∈N. Therefore in the last section we determine the general form of
completely positive maps for these algebras (Choi’s results). Of course, this is
a special case of Stinespring factorization theorem, but some important aspects
are added.

4.1 Gleason’s theorem

In Theorem 2.2.2 we learned that the continuous linear functionals on the
space of all compact operators on a separable Hilbert space H are given by
trace class operators according to the Trace Formula (2.10). There is a pro-
found related result due to A. Gleason which roughly says that this trace for-
mula holds when we start with a countably additive probability measure on
the projections of H instead of a continuous linear functional on the compact
operators on H (Recall that all finite dimensional projections belong to the
space of compact operators).
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Gleason’s result 11 is very important for the (mathematical) foundation of
quantum mechanics. A historical perspective and some key ideas related to
this work are presented in 7.

Theorem 4.1.1 (Gleason’s theorem) Let µ be a countable additive probability mea-
sure on the projections of a separable Hilbert space H of dimension greater than 2.
Then there is a unique nonnegative trace class operator W of trace 1 such that for
every projection P onH one has

µ(P) = Tr(WP). (4.1)

The original proof by Gleason relies on methods not related to topics presented
in this book. And this proof is quite long. Accordingly we do not present it
here. Instead we discuss a weakened version due to P. Busch 6. A proof of
Gleason’s original result which is more easily accessible is 20.

In 16 the physical meaning of effects and their mathematical realization is
explained. Denote by E(H) the set of all effects on the separable Hilbert space
H, i.e., the set of all A ∈ B(H) which satisfy 0≤ A ≤ I.

Definition 4.1.2 A generalized probability measure on all effects on a seperable Hilbert
spaceH is a function µ : E(H) −→R which satisfies
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1) 0≤ µ(E) ≤ 1 for all E ∈ E(H),

2) µ(I) = 1,

3) for any sequence (Ej) ⊂ E(H) such that ∑j Ej ≤ I one has

µ(∑
j

Ej) = ∑
j

µ(Ej).

Similar to Gleason’s result one would like to know the general form of gen-
eralized probability measures on effects. It turns out that the analysis in this
case is much simpler, mainly due to the fact that now a more or less standard
extension in the ordered vector space of self-adjoint elements in B(H)

Bs(H) = B(H)+ −B(H)+

which is generated by the positive elements, is possible.

Lemma 4.1.3 Any generalized probability measure µ on E(H) is the restriction of a
positive linear functional f : B(H) −→ C to the set of effects E(H): µ = f |E(H).
Proof. Because of the defining conditions 1) and 3) a generalized probability measure µ on effects is monotone, i.e., if E, F ∈ E(H)

satisfy E ≤ F then µ(E) ≤ µ(F). If E ∈ E(H) and n ∈N are given, condition 3) implies µ(E) = nµ( 1
n E), since E = 1

n E + · · · + 1
n E (n

summands). Next suppose m,n ∈N are given and m ≤ n so that m/n ≤ 1, thus m
n E ∈ E(H) and the relation µ( 1

n E) = 1
n µ(E) implies

(· · · means m summands)
m
n

µ(E) = mµ(
1
n

E) = µ(
1
n

E + · · ·+ 1
n

E) = µ(
m
n

E),
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and therefore µ(qE) = qµ(E) for all rational numbers q ∈ [0,1].
If 0 < r < 1 is any real number there are sequences of rational numbers qj, pj ∈ (0,1) such that pj ↓ r and qj ↑ r and for all j ∈N,

0 < qj ≤ r ≤ pj < 1. Then we know qjE ≤ rE ≤ pjE and therefore by monotonicity of µ

qjµ(E) = µ(qjE) ≤ µ(rE) ≤ µ(pjE) = pjµ(E).

In the limit j→∞ we thus get rµ(E) ≤ µ(rE) ≤ rµ(E). This implies µ(rE) = rµ(E) for all E ∈ E(H) and all r ∈ [0,1].
Next suppose that A ∈ B(H) is given satsfying 0≤ A but not A≤ I. Then there is r≥ 1 such that E = 1

r A ∈ E(H). But clearly r and
E are not unique. If we have A = r1E1 = r2E2 we can assume that r2 > r1 ≥ 1 so that 0 < r1

r2
< 1. It follows µ(E2) = µ( r1

r2
E1) =

r1
r2

µ(E1)

or r1µ(E1) = r2µ(E2). This allows to define µ1 : B(H)+ −→R by µ1(A) = rµ(E) whenever A = rE with E ∈ E(H) and r ≥ 1.
Clearly µ1 is positive homogenous on the convex cone B(H)+ of nonnegative bounded linear operators onH.
In order to show that µ1 is additive on B(H)+ take A, B ∈ B(H)+. Then there is r > 1 such (A + B)/r ∈ E(H). The definition of µ1

gives µ1(A + B) = rµ( 1
r (A + B)) = rµ( 1

r A) + rµ( 1
r B) = µ1(A) + µ1(B).

Altogether we have shown that µ1 is an additive positive homogeneous function on the convex cone B(H)+. Thus, according to
a standard procedure in the theory of ordered vector spaces, the functional µ1 can be extended to a linear functional µ2 on Bs(H).
If C = A − B ∈ B(H)+ − B(H)+ define µ2(C) = µ1(A) − µ1(B). It is easy to see that µ2 is well defined. If C is also represented
as A′ − B′ ∈ B(H)+ − B(H)+, then it follows µ1(A) − µ1(B) = µ1(A′) − µ1(B′), since A′ + B = A + B′ implies µ1(A′) + µ1(B) =
µ1(A′ + B) = µ1(A + B′) = µ1(A) + µ1(B′). In order to show that µ2 : Bs(H) −→ R is additive take C = A − B and C′ = A′ − B′ in
B(H)+ − B(H)+ and calculate µ2(C + C′) = µ2(A − B + A′ − B′) = µ2(A + A′ − (B + B′)) = µ1(A + A′) − µ1(B + B′) = µ1(A) +
µ1(A′)− µ1(B)− µ1(B′) = µ2(A− B) + µ1(A′ − B′) = µ2(C) + µ2(C′).

Clearly, since µ1 is positive homogeneous, so is µ2. Next suppose λ < 0 and C = A − B ∈ B(H)+ − B(H)+ are given. Then
λC = (−λ)B− (−λ)A∈B(H)+−B(H)+ and so µ2(λC) = µ1((−λ)B)−µ1((−λ)A) = (−λ)µ1(B)− (−λ)µ1(A) = λ(µ1(A)−µ1(B)) =
λµ2(C).

It follows that µ2 : Bs(H) −→ R is a positive linear functional which agrees with µ on E(H). Since B(H) = Bs(H) + iBs(H)
the real linear functional µ2 is extended to a complex linear functional f : B(H) −→ C by setting for A = a + ib ∈ Bs(H) + iBs(H),
f (A) = µ2(a) + i¯2(b). A simple calculation shows that f is indeed complex linear on B(H) and by construction µ = f |E(H). 2

Note that in the proof of this lemma Condition 2) has not been used and Con-
dition 3) has been used only for finitely many effects.
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Theorem 4.1.4 (Busch) Any generalized probability measure µ on the set of effects
E(H) of a separable Hilbert spaceH is of the form

µ(E) = Tr(WE) for all E ∈ E(H)

for some density operator W.
Proof. According to the extension lemma 4.1.3 any generalized probability measure µ on the set of effects is the restriction to this set
of a positive linear functional f on B(H). Such functionals are continuous according to Proposition 3.2.2. Now, since projections are
(special) effects, condition 3) says that the functional f is completely additive (see (3.29)). Hence we conclude by Theorem 3.3.3. 2

4.2 Kraus form of quantum operations

A quantum mechanical systems undergoes various types of transformations,
for instance symmetry transformations, time evolution, and transient interac-
tions with an environment for measurement purposes. These transformations
are described by the concept of a quantum operation and the nature of these
mappings has been discussed since about 50 years starting with a paper by E.
C. G. Sudarshan et al. in 1961.

A mathematically rigorous and comprehensive study of quantum opera-
tions has been published by K. Kraus in 1983 in 16. Starting from first (physi-
cal) principles it is argued that quantum operations are given mathematically
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by linear mappings
φ : B1(H) −→ B1(H)

of the space of trace class operators on a (separable) Hilbert spaceH into itself
which are completely positive and satisfy

Tr(φ(W)) ≤ 1 (4.2)

for all W ∈ B1(H) with W ≥ 0 and Tr(W) = 1, i.e., for all density matrices on
H.

In Definition 3.4.4 we had defined completely positive mappings as map-
pings between C∗-algebras which satisfy certain positivity conditions. Clearly
B1(H) is not a C∗-algebra with unit (if H is not finite dimensional) but it is
a two-sided ideal in the C∗-algebra B(H). Therefore these positivity con-
ditions can be formulated for B1(H) in the same way as for the C∗-algebra
B(H). And it is in this sense that we understand complete positivity for a
map φ : B1(H) −→ B1(H), i.e., φ is completely positive if, and only if, it is k-
positive for k = 1,2, . . .. However in the characterization of positive elements
in B1(H) there is an important difference to the characterization of positive el-
ements in a C∗-algebra. According to the spectral representation of trace class
operators (Theorem 2.1.9) T ∈ B1(H) is positive if, and only if, T = τ∗τ for
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some τ ∈ B2(H) (not in B1(H)). The characterization of positive elements in
Mk(B1(H)) for k ≥ 2 is addressed explicitly later (see Lemma 4.2.4).

4.2.1 Operations and effects

Lemma 4.2.1 If a positive linear map φ : B1(H) −→ B1(H) satisfies (4.2), then it is
continuous with respect to the trace norm:

‖φ(T)‖1 ≤ C‖T‖1 , C = supTr(φ(W)) ≤ 1 (4.3)

where the sup is taken over all density matrices W onH.

Proof. By (4.2) we obviously have that C = supTr(φ(W)) ≤ 1 where the sup is taken over all density matrices. Write T = T∗ ∈ B1(H)

as T = T+ − T− where T± = (|T| ± T)/2. We can assume that Tr(T±)> 0. Then W± = 1
Tr(T±)

T± are density matrices and it follows that

T = Tr(T+)W+ − Tr(T−)W−

and thus φ(T) = Tr(T+)φ(W+)− Tr(T−)φ(W−). According to (2.12) the trace norm of φ(T) can be calculated as

‖φ(T)‖1 = sup
‖B‖=1

|Tr(Bφ(T))|.

Insert the above expression for φ(T) and estimate as follows:

|Tr(Tr(T+)Bφ(W+))− Tr(T−)Bφ(W−))| ≤
Tr(T+)|Tr(Bφ(W+))|+ Tr(T−)|Tr(Bφ(W−))|

Since φ is positive we know
|Tr(Bφ(W±))| ≤ ‖B‖‖φ(W±)‖1 = ‖B‖Tr(φ(W±)) ≤ ‖B‖C
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and thus
‖φ(T)‖1 ≤ Tr(T+)C + Tr(T−)C = C‖T‖1 .

2

The adjoint φ∗ of an operation φ in the duality between trace class operators
and bounded linear operators onH (see Theorem 2.2.3) is then a linear map

φ∗ : B(H) −→ B(H)

which is positive too (see Lemma 4.2.4). From a physical point of view this
adjoint is important since it gives the “effect" F = Fφ corresponding to an op-
eration as

F = φ∗(I).

Lemma 4.2.2 Let φ :B1(H)−→B1(H) be a positive linear mapping such that Tr(φ(W))≤
1 for all density matrices W onH. Then its dual map φ∗ (in the duality established in
Theorem 2.2.3) is a linear map B(H) −→ B(H) which is well defined by

Tr(φ∗(B)T) = Tr(Bφ(T)) for all B ∈ B(H), T ∈ B1(H). (4.4)
Proof. Given such a map φ it is continuous according to Lemma 4.2.1: ‖φ(T)‖1 ≤ C‖T‖1 for all T ∈ B1(H). Fix B ∈ B(H); since

|Tr(Bφ(T))| ≤ ‖B‖‖φ(T)‖1 ≤ ‖B‖C‖T‖1 ,
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T −→ Tr(Bφ(T)) is a continuous linear functional on B1(H) and therefore according to Theorem 2.2.3 of the form Tr(CT) with a unique
C ∈ B(H). This element C is called φ∗(B). This applies to every B ∈ B(H) and thus defines the adjoint mapping φ∗, and by construc-
tion Relation (4.4) holds. A straight forward calculation establishes linearity of φ∗, using uniqueness in the duality between B1(H) and
B(H). 2

Corollary 4.2.3 For a positive linear mapping φ : B1(H) −→ B1(H) the following
statements are equivalent:

a) Tr(φ(W)) ≤ 1 for all density matrices W onH;

b) φ is continuous and φ∗(I) ≤ I.

Proof. Suppose a) holds. Then, by Lemma 4.2.1 the map φ is continuous. Thus according to Lemma 4.2.2 the dual mapping φ∗ :
B(H) −→ B(H) is well defined and Relation (4.4) holds, in particular for all density matrice W and B = I,

Tr(φ∗(I)W) = Tr(φ(W)).

It follows Tr(φ∗(I)W) ≤ 1 for all W. For W = [x, x], x ∈ H, ‖x‖ = 1 this says Tr(φ∗(I)[x, x]) = 〈x,φ∗(I)x〉 ≤ 1 and hence 〈x,φ∗(I)x〉 ≤
〈x, x〉 for all x ∈ H and φ∗(I) ≤ I follows.

Conversely assume b). Since φ is continuous the dual map φ∗ is well defined and (4.4) holds and thus again Tr(φ∗(I)W) = Tr(φ(W))
for all density matrices W. Now φ∗(I) ≤ I implies a)

Tr(φ(W)) = Tr(W1/2φ∗(I)W1/2) ≤ Tr(W1/2W1/2) = Tr(W) = 1.

2

Lemma 4.2.4 A linear mapping φ : B1(H) −→ B1(H) is completely positive if, and
only if, its adjoint mapping φ∗ : B(H) −→ B(H) is completely positive.
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Proof. Naturally the proof consists in showing that for all k ∈N, the mapping φ is k-positive if, and only if, the adjoint mapping φ∗ is
k-positive. We do this explicitly for the case k = 1 and indicate the necessary changes for k ≥ 2.

If B ∈ B(H) is given define a linear functional FB on B1(H) by FB(T) = Tr(Bφ(T)). According to Theorem 2.2.3 the duality is given
by the trace formula

Tr(Bφ(T)) = Tr(φ∗(B)T) for all B ∈ B(H), T ∈ B1(H). (4.5)

If φ is positive, then we know φ(T)≥ 0 for all T ∈ B1(H), T ≥ 0, and we have to show that φ∗(B)≥ 0 for all B ∈ B(H), B≥ 0. According
to Theorem 2.1.9 φ(T) ∈ B1(H) is positive if, and only if, it is of the form φ(T) = τ∗τ for some τ = τ∗ ∈ B2(H). In this case we have

Tr(Bφ(T)) = Tr(Bτ∗τ) = Tr(τBτ∗) ≥ 0 for all B ≥ 0.

The duality relation implies
Tr(φ∗(B)T) ≥ 0 for all T ∈ B1(H), T ≥ 0.

Now choose x ∈ H and insert the positive finite rank operator T = [x, x] defined by [x, x]y = x〈x,y〉, y ∈ H, into this estimate to get

0≤ Tr(φ∗(B)T) = 〈x,φ∗(B)x〉

and thus φ∗(B) ≥ 0 for B ≥ 0.
Conversely assume that φ∗ is a positive mapping so that φ∗(B) ≥ 0 for all B ≥ 0. Then, by Lemma 3.4.1 (or the square root lemma)

for some b ∈ B(H) we know φ∗(B) = b∗b and the duality relation yields

Tr(Bφ(T)) = Tr(φ∗(B)T) = Tr(b∗bT) = Tr(bTb∗) ≥ 0

for all T ≥ 0. As above insert B = [x, x] to get 〈x,φ(T)x〉 ≥ 0 whenever T ≥ 0 and hence the mapping φ is positive.
Now assume k ≥ 2; abbreviate A = B1(H) and B = B(H). We have to show that φk : Mk(A) −→ Mk(A) is positive if, and only

if, φ∗k : Mk(B) −→ Mk(B) is positive. Recall that A = [aij] ∈ Mk(A) respectively B = [bij] ∈ Mk(B) act on the Hilbert space Hk =

H×H× · · · ×H (k components). Under standard matrix operations we have Mk(B) = B(Hk) and similarly Mk(A) = B1(Hk) (see the
Exercises). For the relation of traces inH and inHk one finds (see again the Exercises for this chapter)

TrHk ([Tij]) =
k

∑
j=1

Tr(Tjj)

when Tr denotes the trace inH. Thus we get the extended duality formula

TrHk ([bij]φk([Tij])) = TrHk (φ∗k ([bij])[Tij])) (4.6)
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since

TrHk ([bij]φk([Tij])) =
k

∑
i,j=1

Tr(bijφ(Tji)) =
k

∑
i,j=1

Tr(φ∗(bij)Tji).

Therefore we can argue for φk : B1(Hk) −→ B1(Hk) and φ∗k : B(Hk) −→ B(Hk) as above for φ and φ∗. 2

4.2.2 The representation theorem for operations

Naturally the question about the general mathematical form of a quantum
operation arises. The answer has been given in 16. In Section 3.4.5 we had
studied completely positive maps on B(H). Here we begin by investigating
completely positive maps on trace class operators and find some extensions of
the earlier results.

Proposition 4.2.5 For a sequence of operators aj ∈ B(H) which satisfies (3.56) with
bound B the series

φ(T) =
∞

∑
j=1

ajTa∗j , T ∈ B1(H) fixed (4.7)

converges in trace norm and defines a completely positive mapping on B1(H). The
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related series (3.57), i.e.,

f (a) =
∞

∑
j=1

a∗j aaj, a ∈ B(H) fixed

converges ultraweakly and defines the adjoint of φ, i.e.,

φ∗(a) =
∞

∑
j=1

a∗j aaj, a ∈ B(H) fixed. (4.8)

Furthermore
φ∗(I) ≤ B.

Proof. Given 0≤ T ∈ B1(H) define for m ∈N,

φm(T) =
m

∑
j=1

ajTa∗j .

Clearly φm(T) is nonnegative and of trace class; thus for m > n we find

‖φm(T)− φn(T)‖1 =

∥∥∥∥∥ m

∑
j=n+1

ajTa∗j

∥∥∥∥∥
1

= Tr

(
m

∑
j=n+1

ajTa∗j

)

= Tr

(
m

∑
j=n+1

a∗j ajT

)
= Tr(SmT)− Tr(SnT)

where the operators Sm = ∑m
j=1 a∗j aj where introduced in (3.56). Because of the ultraweak converges Sm −→ S according to Lemma

3.4.11 we know Tr(SmT)−→ Tr(ST) and we conclude that (φm(T)) is a Cauchy sequences with respect to the trace norm and therefore
this sequence converges in trace norm to a unique φ(T) ∈ B1(H).
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Since the trace norm dominates the operator norm we also have convergence of (4.7) in operator norm and thus also ultraweakly.
Since every trace class operator is the complex linear combination of four positive ones the series (4.7) converges for every T ∈ B1(H)
with respect to the topologies as indicated above. The complete positivity of φ follows as in the proof of Lemma 3.4.11.

These continuity properties allow to determine the dual φ∗ of φ easily. This dual is determined by

Tr(Bφ(T)) = Tr(φ∗(B)T) for all B ∈ B(H), T ∈ B1(H).

We have
Tr(Bφ(T)) = lim

m→∞
Tr(Bφm(T))

and by property c) of Corollary 2.1.8

Tr(B
m

∑
j=1

ajTa∗j ) = Tr(
m

∑
j=1

a∗j BajT).

According to Lemma 3.4.11 we know limm→∞ ∑m
j=1 a∗j Baj = f (b) in the ultraweak topology, hence Tr(φ∗(B)T) = Tr( f (B)T) for all

T ∈ B1(H). Thus we conclude. 2

The following representation theorem is the version Kraus has given in his
1983 Springer Lecture Notes. Its proof is actually much more complicated than
I originally thought, even after substantial preparations (Stinespring’s factor-
ization theorem, Naimark’s characterization of representations of B(H), char-
acterizations of completely positive maps), and I also think that in some points
it is not quite accurate. The elimination of the representation of the Calkin al-
gebra in the representation formula for operations looks quite strange to me (I
offer my own proof) and also the bound Tr(φ(W))≤ I for all density matrices
W is not taken into account properly. In order to do so I have added the im-
portant Corollary 4.2.3 .
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Therefore I would be interested to see an updated proof of Kraus’ result. Maybe
you know some source?
Also, since the presentation and the proof of this result takes much more space
than I originally envisaged we might think about to include only a shortened
and simplified version. Maybe you have some suggestions.

Theorem 4.2.6 (First representation theorem of Kraus) Given an operation φ :
B1(H) −→ B1(H), there exists a finite or countable family

{
aj : j ∈ J

}
of bounded

linear operators onH, satisfying

∑
j∈J0

a∗j aj ≤ I for all finite J0 ⊂ J, (4.9)

such that for every T ∈ B1(H) and every B ∈ B(H) one has

φ(T) = ∑
j∈J

ajTa∗j (4.10)

respectively
φ∗(B) = ∑

j∈J
a∗j Baj. (4.11)
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The effect F corresponding to φ thus has the representation

F = φ∗(I) = ∑
j∈J

a∗j aj. (4.12)

In the case that the index set J is infinite, i.e., J = N, the series in (4.10) converges
with respect to the trace norm while the series (4.11) - (4.12) converge in the ultraweak
operator topology.

Conversely, if a countable family
{

aj : j ∈ J
}

of bounded linear operators on H is
given which satisfies (4.9) then Equation (4.10) defines an operation φ whose adjoint
φ∗ is given by (4.11) and the effect F corresponding to this operation is (4.12).

Proof. Suppose we are given a completely positive map φ : B1(H) −→ B1(H) satisfying (4.2). Lemma 4.2.4 implies that the adjoint
map φ∗ : B(H) −→ B(H) is completely positive too, thus according to Theorem 3.4.12 φ∗ is of the form (3.59)

φ∗(B) = V∗0 π0(B)V0 + ∑
j∈J

a∗j Baj, B ∈ B(H)

with bounded linear operators aj ∈ B(H) satisfying

∑
j∈J

a∗j aj ≤ φ∗(I)

and where the representation π0 vanishes for all B ∈ Bc(H). According to Corollary 4.2.3 the bound φ∗(I) ≤ I is known and hence
Condition (4.9) holds.

Proposition 4.2.5 implies that the map φ∗1 (B) = ∑j∈J a∗j Baj on B(H) is the adjoint of the mapping φ1(T) = ∑j∈J ajTa∗j on B1(H). In
order to conclude we need to determine the map φ0 on B1(H) whose adjoint is the map φ∗0 (B) = V∗0 π0(B)V0 on B(H). This map is
defined through the duality relation

Tr(φ∗0 (B)T) = Tr(Bφ0(T)) for all B ∈ B(H), T ∈ B1(H).
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Since the representation π0 of B(H) vanishes on the subspace Bc(H) we know Tr(Bφ0(T)) = 0 for all B ∈ Bc(H), hence in particular
for all x,y ∈ H setting B = [xy],

〈y,φ0(T)x〉 = Tr([xy]φ0(T)) = 0,

and therefore φ0(T) = 0 for all T ∈ B1(H) and thus φ∗0 = 0 on B(H). It follows

φ∗(I) = ∑
j∈J

a∗j aj.

The converse has already been proven in Proposition 4.2.5 and Lemma 3.4.11 with the bound B = I when we observe Corollary
4.2.3. 2

Remark 4.2.7 Sometimes one requires that an operation φ is trace preserving, i.e.,
Tr(φ(W)) = 1 for all density matrices W. This will be the case when in our represen-
tation (4.10) the operators aj satisfy

∑
j∈J

a∗j aj = I. (4.13)

In order to prove this recall that according to (4.12) one has

∑
j∈J

a∗j aj = φ∗(I)

and that we know φ∗(I) ≤ I. The duality relation says

Tr(φ(W)) = Tr(φ∗(I)W)
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for all density matrices W. Thus, if φ∗(I) = I then Tr(φ(W)) = 1 for all density
matrices and φ is trace preserving. Conversely suppose that the operation φ is trace
preserving but φ∗(I) 6= I. Then, since φ∗(I) ≤ I is known, there is x ∈ H, ‖x‖ = 1
such that 〈x,φ∗(I)x〉< 1. If the density matrix W = [x, x] is inserted into the duality
relation one gets

Tr(φ([x, x])) = Tr(φ∗(I)[x, x]) = 〈x,φ∗(I)x〉 < 1,

hence a contradiction and therefore φ∗(I) = I holds.

4.3 Choi’s results for finite dimensional completely positive maps

Naturally in the case of mappings f : A −→ B with A = Mn(C) and B =
Mm(C) we can use additional structural information to strengthen the state-
ments of Stinespring’s factorization theorem (Theorem 3.4.8) and to simplify
the proofs. This has been done in 1975 by M. Choi 8 with inspiration from elec-
trical circuit theory (n-port systems) by using the simple fact that these matrix
algebras Mn(C) have a basis

e(n;ij), i, j = 1,2, . . . ,n (4.14)
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where e(n;ij) denotes the n × n matrix with the entry 1 in the ith row and jth
column and all other entries are 0.

In terms of this basis we can write a ∈ Mn(C) as follows:

a =

a11 · · · a1n
... ... ...

an1 · · · ann

 =
n

∑
i,j=1

aije(n;ij), aij ∈ C . (4.15)

And this allows to determine the general form of a linear map f : Mn(C) −→
Mm(C) easily. For a ∈ Mn(C) as above one finds by linearity

f (a) =
n

∑
i,j=1

aij f (e(n;ij)).

Since f (e(n;ij)) ∈ Mm(C) it has a unique expansion with respect to the basis

e(m;kl), k, l = 1,2, . . . ,m ,

i.e.

f (e(n;ij)) =
m

∑
k,l=1

f (e(n;ij))kle(m;kl), f (e(n;ij))kl ∈ C .
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Thus we can say that there is a one-to-one correspondence between linear
maps f : Mn(C) −→ Mm(C) and system of complex numbers Fij

kl, i, j = 1, . . . ,n,
k, l = 1, . . . ,m such that

f (a) =
m

∑
k,l=1

n

∑
i,j=1

aijF
ij
kle

(m;kl) (4.16)

with a as in (4.15).

Theorem 4.3.1 (Choi’s characterization of completely positive maps) For a lin-
ear map f : Mn(C) −→ Mm(C) the following statements are equivalent:

(a) f is n-positive, i.e., the map fn : Mn(Mn(C))−→Mn(Mm(C)) defined in (3.40)
is positive;

(b) the matrix C f ∈ Mn(Mm(C)) defined by

C f =

 f (e(n;11)) · · · f (e(n;1n))
... · · · ...

f (e(n;n1)) · · · f (e(n;nn))

 (4.17)

is positive where e(n;ij) is specified in (4.14); it is called the Choi -matrix of f .
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(c) f has the form

f (a) =
nm

∑
µ=1

VµaV∗µ , a ∈ Mn(C) (4.18)

with m× n matrices Vµ, and thus f is completely positive.

Proof. If a linear map f is of the form (4.18) it is a straightforward calculation to show that f is completely positive, just as in the case
of the Stinespring factorization. Thus it is clear that (c) implies (a).

(a)⇒ (b): Note that the matrix E ∈ Mn(Mn(C)) given by

E =

 e(n;11) · · · e(n;1n)

... · · · ...
e(n;n1)) · · · e(n;nn)

 (4.19)

satisfies E∗ = E (since (e(n;ij))∗ = e(n;ji) and E2 = E, thus E = E∗E is positive in Mn(Mn(C)) by Lemma 3.4.1. Since f is assumed to be
n-positive fn(E) = C f is positive in Mn(Mm(C)).

(b)⇒ (c): By definition, the matrix C f acts onHn
m
∼= Cnm. If (b) is assumed this matrix is positive and thus its spectrum is contained

in [0,
∥∥∥C f

∥∥∥]. Its spectral representation is of the form

C f =
nm

∑
ν=1

λkQk, 0≤ λk ≤
∥∥∥C f

∥∥∥
where Qk is the projector onto the eigen-space corresponding to the eigenvalue λk.

Denote by Pi the projection from Hn
m = Hm ×Hm × · · · × Hm (n times) to the ith component Hm, i.e., Pi(z1, . . . ,zi, . . . ,zn) = zi, for

all zj ∈ Hm, j = 1, . . . ,n. Then (4.17) shows

f (e(n;ij)) = PiC f Pj, i, j = 1, . . . ,n ,

and the spectral representation thus implies

f (e(n;ij)) =
nm

∑
k=1

λkPiQkPj .
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The normalized eigenvector v(k) for the eigenvalue λk belongs to the spaceHn
m and thus has a decomposition v(k) = (v(k)1 , . . . ,v(k)n ) with

v(k)i ∈ Hm for i = 1, . . . ,n. With the standard convention for the tensor product the projector Qk can be realized as Qk = v(k) ⊗ (v(k))∗.
This allows to rewrite the above formula for f (e(n;ij)) as

f (e(n;ij)) =
nm

∑
k=1

λkPiv(k) ⊗ (v(k))∗Pj =
nm

∑
k=1

λkv(k)i ⊗ (v(k)j )∗ .

Denote by e(n;i), i = 1, . . . ,n the standard basis of Hn. For k = 1, . . . ,mn define linear operators V(k) :Hn −→Hm by their action on this
basis

V(k)e(n;i) =
√

λkv(k)i , i = 1, . . . ,n .

Hence we can continue our chain of identities for f (e(n;ij)) by

f (e(n;ij)) =
nm

∑
k=1

(V(k)e(n;i))⊗ (V(k)e(n;j))∗ =
nm

∑
k=1

V(k)(e(n;i))⊗ (e(n;j))∗)(V(k))∗

or, since e(n;i) ⊗ (e(n;j))∗ = e(n;ij),

f (e(n;ij)) =
nm

∑
k=1

V(k)e(n;ij)(V(k))∗ (4.20)

and thus by (4.15) f has the form (4.18). This proves (c). 2

Remark 4.3.2 (a) This result of M. D. Choi is quite remarkable. It shows in partic-
ular that a linear map on the matrix algebra Mn(C) with values in Mm(C) is
already completely positive when it is n-positive.

(b) In addition it is shown that such a linear map is n-positive whenever it is n-
positive on the elements of the (standard) basis.
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(c) It determines the explicit form of completely positive maps which is considerable
more specific than the Stinespring factorization.

(d) In the case of matrix algebras the proof of the Stinespring factorization indicates
that a linear map is completely positive if is is n2 ×m-positive (the dimension of
the space Mn(C)⊗Cm is n2m).

(e) The map f −→ C f defined in Equation (4.17) is often called Jamiolkowski iso-
morphism or Choi-Jamiolkowski isomorphism. It appeared first in 13.

Corollary 4.3.3 (Finite-dimensional representations of Mn(C)) Let π : Mn(C)−→
Mm(C) be a finite-dimensional representation of the matrix algebra Mn(C). Then
there are m× n matrices Vµ, µ = 1, . . . ,mn satisfying

Vµ∗Vν = δµ,ν In

such that

π(a) =
nm

∑
k=1

V(k)a(V(k))∗ ∀ a ∈ Mn(C).
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4.4 Exercises

1. For k = 2,3, . . . and a separable Hilbert spaceH denoteHk =H×H· · ·H (k
components). With the standard operations and the natural scalar prod-
uct Hk is a Hilbert space in which the given Hilbert space is embedded
by isometric mappings J1 : H −→ H × {0} × · · · × {0}, J2 : H −→ {0} ×
H × {0} × · · · × {0}, . . ., Jk : H −→ {0} × · · · × {0} × H. Show: If Bκ ={

eκ
j : j ∈N

}
is an orthonormal basis of H, then J1(B1) × J2(B2) × · · · ×

Jk(Bk) is an orthonormal basis ofHk.

2. Using the notation introduced in the text show Mk(B(H)) = B(Hk) and
Mk(B1(H)) = B1(Hk).
Hints: In order to show Mk(B1(H)) ⊆ B1(Hk) use a suitable characteri-
zation of trace class operators as given in Proposition 2.1.5 and observe
Exercise 1.

3. Observe Exercise 1 to prove the ’trace formula’

TrHk([Tij]) =
k

∑
j=1

Tr(Tjj)
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for [Tij] ∈ Mk(B1(H)).
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